期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Observation and modeling on irregular purple soil water infiltration process 被引量:6
1
作者 CHENG Dong-bing DONG Lin-yao +1 位作者 QIAN Feng SUN Bei 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1076-1085,共10页
The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inver... The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inverted triangular profiles was designed, and the Green-Ampt model was employed for the process simulation. The results indicate that(1) the wetting front in coarse texture soils transports faster than in fine texture soils;(2) for the homogeneous case, the wetting front in triangularshaped soils transports faster than the inverted triangular type, but the triangular-shaped soils show a lower infiltration rate;(3) in the initial step, the wetting front in triangular-shaped soils shows higher transport speed, but depicts lower speed with increase in the time;(4) both the wetting front and infiltration rate show a significant exponential relation with the time. From these findings, an empirical model was developed which agrees well with the observed data and provides a useful method for this field of soil research. 展开更多
关键词 Purple soil Triangular profile Inverted triangular profiles soil water infiltration Empirical modeling
下载PDF
Modeling the triaxial behavior of riverbed and blasted quarried rockfill materials using hardening soil model 被引量:5
2
作者 N.P.Honkanadavar K.G.Sharma 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第3期350-365,共16页
Riverbed modeled rockfill material from Noa Dehing dam project, Arunachal Pradesh, India and blasted quarried modeled rockfill material from Kol dam project, Himachal Pradesh, India were considered for this research. ... Riverbed modeled rockfill material from Noa Dehing dam project, Arunachal Pradesh, India and blasted quarried modeled rockfill material from Kol dam project, Himachal Pradesh, India were considered for this research. Riverbed rockfill material is rounded to sub-rounded and quarried rockfill material is angular to sub-angular in shape. Prototype rockfill materials were modeled into maximum particle size (dmax) of 4.75 mm, 10 mm, 19 mm, 25 mm, 5O mm and 80 mm for testing in the laboratory. Consolidated drained triaxial tests were conducted on modeled rockfill materials with a specimen size of 381 mm in diameter and 813 mm in height to study the stress-strain-volume change behavior for both rockfill materials. Index properties, i.e. uncompacted void content (UVC) and uniaxial compressive strength (UCS), were determined for both rockfill materials in association with material parameters. An elasto- plastic hardening soil (HS) constitutive model was used to predict the behavior of modeled rockfill materials. Comparing the predicted and observed stress-strain-volume change behavior, it is found that both observed and predicted behaviors match closely. The procedures were developed to predict the shear strength and elastic parameters of rockfill materials using the index properties, i.e. UCS, UVC and relative density (RD), and predictions were made satisfactorily. Comparing the predicted and experi- mentally determined shear strengths and elastic parameters, it is observed that both values match closely. Then these procedures were used to predict the elastic and shear strength parameters of large- size prototype rockfill materials. Correlations were also developed between index properties and ma- terial strength parameters (dilatancy angle, ~, and initial void ratio, einit, required for HS model) of modeled rockfill materials and the same correlations were used to predict the strength parameters for the prototype rockfill materials. Using the predicted material parameters, the stress-strain-volume change behavior of prototype rockfill material was predicted using elastoplastic HS constitutive model. The advantage of the proposed methods is that only index properties, i.e. UCS, UVC, RD, modulus of elasticity of intact rock, Eir, and Poisson's ratio of intact rock, Vir, are required to determine the angle of shearing resistance, Ф, modulus of elasticity, E50^ref and Poisson's ratio, , of rockfill materials, and there is E50&ref no need of triaxial testing. It is believed that the proposed methods are more realistic, economical, and can be used where large-size triaxial testing facilities are not available. 展开更多
关键词 Riverbed rockfill materialsQuarried rockfill materialsTriaxial testingmodelingStrength lawHardening soil (HS) model
下载PDF
Modeling of forest soil and litter health using disturbance and landscape heterogeneity indicators in northern Iran 被引量:1
3
作者 Malihe ERFANI Abdolrassoul SALMANMAHINY +1 位作者 Afshin DANEHKAR Vahid ETEMAD 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1801-1813,共13页
This paper focuses on the indicators of soil and litter health, disturbance, and landscape heterogeneity as a tool for prediction of ecosystem sustainability in the northern forests of Iran. The study area was divided... This paper focuses on the indicators of soil and litter health, disturbance, and landscape heterogeneity as a tool for prediction of ecosystem sustainability in the northern forests of Iran. The study area was divided into spatial homogenous sites using slope, aspect, and soil humidity classes. Then a range of sites along the disturbance gradient was selected for sampling. Chemical and physical indicators of soil and litter health were measured at random points within these sites. Structural equation modeling(SEM) was applied to link six constructs of landscape heterogeneity, three constructs of disturbance(harvest, livestock, and human accessibility), and soil and litter health. The results showed that with decreasing accessibility, the total N and organic matter content of soil increased and effective bulk density decreased. Harvesting activities increased soil organic matter. Therefore, it is concluded that disturbances through harvesting and accessibility inversely affect the soil health. Unexpectedly, it was found that the litter total C and C:N ratio improved with an increase in the harvest and accessibility disturbances, whereas litter bulk density decreased. Investigation of tree composition revealed that in the climax communities, which are normally affected more by harvesting activities, some species like Fagus orientalis Lipsky with low decomposition rate are dominant. The research results showed that changes in disturbance intensity are reflected in litter and soil indicators, whereas the SEM indicated that landscape heterogeneity has a moderator effect on the disturbance to both litter and soil paths. 展开更多
关键词 soil health Forest litter Structural equation modeling(SEM) Partial least squares(PLS) Ecosystem approach Northern Iran
下载PDF
Runoff Modeling in Ungauged Catchments Using Machine Learning Algorithm-Based Model Parameters Regionalization Methodology 被引量:1
4
作者 Houfa Wu Jianyun Zhang +4 位作者 Zhenxin Bao Guoqing Wang Wensheng Wang Yanqing Yang Jie Wang 《Engineering》 SCIE EI CAS CSCD 2023年第9期93-104,共12页
Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization... Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization,which is the most widely used approach.Runoff modeling was studied in 38 catchments located in the Yellow–Huai–Hai River Basin(YHHRB).The values of the Nash–Sutcliffe efficiency coefficient(NSE),coefficient of determination(R2),and percent bias(PBIAS)indicated the acceptable performance of the soil and water assessment tool(SWAT)model in the YHHRB.Nine descriptors belonging to the categories of climate,soil,vegetation,and topography were used to express the catchment characteristics related to the hydrological processes.The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models,including linear regression(LR)equations,support vector regression(SVR),random forest(RF),k-nearest neighbor(kNN),decision tree(DT),and radial basis function(RBF).Each of the 38 catchments was assumed to be an ungauged catchment in turn.Then,the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments.Furthermore,the similaritybased regionalization scheme was used for comparison with the regression-based approach.The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments.Compared with the traditional LR-based approach,the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships.The performances of different approaches were similar in humid regions,while the advantages of the machine learning techniques were more evident in arid regions.When the study area contained nested catchments,the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance.The new findings could improve flood forecasting and water resources planning in regions that lack observed data. 展开更多
关键词 Parameters estimation Ungauged catchments Regionalization scheme Machine learning algorithms soil and water assessment tool model
下载PDF
Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools 被引量:2
5
作者 YU Dongsheng PAN Yue +4 位作者 ZHANG Haidong WANG Xiyang NI Yunlong ZHANG Liming SHI Xue-zheng 《Chinese Geographical Science》 SCIE CSCD 2017年第4期552-568,共17页
Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of... Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon(SOC) pool simulation due to their strong influences on the modeling.A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales,namely,1:50 000(C5),1:200 000(D2),1:500 000(P5),1:1 000 000(N1),1:4 000 000(N4) and 1:14 000 000(N14),in the Taihu Region of China.Both soil unit formats were used for regional SOC pool simulation with a De Nitrification-DeC omposition(DNDC) process-based model,which spans the time period from 1982 to 2000 at the six map scales.Four indices,namely,soil type number(STN),area(AREA),average SOC density(ASOCD) and total SOC stocks(SOCS) of surface paddy soils that were simulated by the DNDC,were distinguished from all these soil polygon and grid units.Subjecting to the four index values(IV) from the parent polygon units,the variations in an index value(VIV,%) from the grid units were used to assess its dataset accuracy and redundancy,which reflects the uncertainty in the simulation of SOC pools.Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools,matching their respective soil polygon unit map scales.With these optimal raster resolutions,the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy,when VIV < 1% was assumed to be a criterion for all four indices.A quadratic curve regression model,namely,y = – 0.80 × 10^(–6)x^2 + 0.0228 x + 0.0211(R^2 = 0.9994,P < 0.05),and a power function model R? = 10.394?^(0.2153)(R^2 = 0.9759,P < 0.05) were revealed,which describe the relationship between the optimal soil grid unit resolution(y,km) and soil polygon unit map scale(1:10 000x),the ratio(R?,%) of the optimal soil grid size to average polygon patch size(?,km^2) and the ?,with the highest R^2 among different mathematical regressions,respectively.This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale,and be referenced to other landscape polygon patches' mesh partition. 展开更多
关键词 soil organic carbon(SOC) soil grid unit resolutions soil polygon unit map scales DeNitrification-DeComposition(DNDC) model SOC pools
下载PDF
Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia 被引量:1
6
作者 Olfa TERWAYET BAYOULI ZHANG Wanchang Houssem TERWAYET BAYOULI 《Journal of Arid Land》 SCIE CSCD 2023年第11期1269-1289,共21页
Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and incre... Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments. 展开更多
关键词 DROUGHTS soil erosion vegetation health index(VHI) revised universal soil loss equation(RUSLE)model southeastern Tunisia
下载PDF
Study on Soil Erosion Model Under Different Slopes in Southwest Karst Mountain Area
7
作者 高翔 王济 +1 位作者 蔡雄飞 胡丰青 《Agricultural Science & Technology》 CAS 2013年第12期1847-1851,共5页
The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distri... The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distributed, were chosen as test soil samples and slope, rain intensity, vegetation coverage and bare-rock ratio were taken as soil erosion factors. Artificial rain simulation instruments (needle-type) were made use of to simulate correlation of rain intensity, vegetation coverage, and bare-rock ratio with soil erosion quantity. Furthermore, multiple-factor linear regression analysis, stepwise regression analysis and multiple-factor non-linear regression analy- sis were made to establish a multiple-factor formula of soil erosion modulus with dif- ferent slopes and select regression models with high correlation coefficients. The re- sults show that a non-linear regression model reached extremely significant level or significant level (0.692〈FF〈0.988) and linear regression model achieved significant lev- el (0.523〈FF〈0.634). The effects of erosion modulus changed from decreasing to in- creasing and the erosion factors from high to low were rain intensity, vegetation cov- erage and bare-rock ratio when slope gradient was at 6~, 16~, 26~ and 36~. The mod- el is of high accuracy for predicting gentle slope and abtupt slope, which reveals correlation of erosion modulus with erosion factors in karst areas. 展开更多
关键词 Southwest karst mountain area SLOPE soil erosion model
下载PDF
Shrubs proliferated within a six-year exclosure in a temperate grassland—Spatiotemporal relationships between vegetation and soil variables 被引量:13
8
作者 Yong Zhang Qiong Gao +2 位作者 Li Xu Mei Yu YuQiang Tian 《Research in Cold and Arid Regions》 CSCD 2014年第2期139-149,共11页
Overgrazing has been considered one of the maj or causes that trigger shrub encroachment of grassland. Proliferation of shrubs in grassland is recognized as an important indicator of grassland degradation and desertif... Overgrazing has been considered one of the maj or causes that trigger shrub encroachment of grassland. Proliferation of shrubs in grassland is recognized as an important indicator of grassland degradation and desertification. In China, various conservation measures, including enclosures to reduce livestock grazing, have been taken to reverse the trend of grassland desertification, yet shrubs have been reported to increase in the grasslands over the past decades. In late 2007, we set up a 400-m-by-50-m exclosure in a long-term overgrazed temperate grassland in Inner Mongolia, with the ob- jective to quantify the spatiotemporal relationship between vegetation dynamics, soil variables, and grazing exclusion. Soil moisture was continuously monitored within the exclosure, and cover and aboveground biomass of the shrubs were measured inside the exclosure in 2007, 2009, 2010, 2012, and 2013, and outside the exclosure in 2012 and 2013. We found the average shrub cover and biomass significantly increased in the six years by 103 % and 120%, respectively. The result supported the hypothesis that releasing grazing pressure following long-term overgrazing tends to trigger shrub invasion into grassland. Our results, limited to a single gradient, suggest that any conservation measures with quick release of overgrazing pressure by enclosure or other similar means might do just the opposite to accelerate shrub en- croachment in grassland. The changes in vegetation cover and biomass were regressed on the temporal average of the soil moisture content by means of the generalized least square technique to quantify the effect of the spatial autocor- relation. The result indicates that the grass cover and biomass significantly increased with the top, but decreased with the bottom layer soil moisture. The shrub cover and biomass, on the other hand, decreased with the top, but increased with bottom soil moisture, although the regression coefficients for the shrubs were not statistically significant. Hence this study supports the two-layered soil model which assumes grasses and shrubs use belowground resources in dif- ferent depths. 展开更多
关键词 shrubs encroachment in grassland two-layered soil model grassland conservation spatial autocorrelation northern China
下载PDF
Drilling Power Consumption and Soil Conveying Volume Performances of Lunar Sampling Auger 被引量:10
9
作者 TIAN Ye TANG Dewei +2 位作者 DENG Zongquan JIANG Shengyuan QUAN Qiquan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期451-459,共9页
The sampling auger used in lunar sampling and return mission is to transmit power and convey soil, and its performance is the key factor of the whole mission. However, there is currently a lack of the optimization res... The sampling auger used in lunar sampling and return mission is to transmit power and convey soil, and its performance is the key factor of the whole mission. However, there is currently a lack of the optimization research on soil conveying volume and power consumption models in auger structure design. To provide the drilled object, the simulation lunar soil, whose physical and mechanical property is the same as the real soil, is made by reducing soil void ratio. The models are formulated to analyze the influence of auger structure parameters on power consumption and soil conveying volume. To obtain the optimized structure parameters of auger, the multi-objective optimization functions of the maximum soil conveying volume and minimum power consumption are developed. To verify the correctness of the models, the performances of different augers drilling simulation soil are tested. The test results demonstrate that the power consumption of optimized auger is the lowest both in theory and test, and the experimental results of soil conveying volume are in agreement with theoretical analysis. Consequently, a new method for designing a lunar sampling auger is proposed which includes the models of soil conveying volume and transportation power consumption, the optimization of structure parameters and the comparison tests. This method provides a reference for sampling auger designing of the Chinese Lunar Sample Mission. 展开更多
关键词 lunar sampling optimal design AUGER soil conveying volume model structure parameter
下载PDF
The Numerical Scheme Development of a Simplified Frozen Soil Model 被引量:5
10
作者 李倩 孙菽芬 戴秋丹 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第5期940-950,共11页
In almost all frozen soil models used currently, three variables of temperature, ice content and moisture content are used as prognostic variables and the rate term, accounting for the contribution of the phase change... In almost all frozen soil models used currently, three variables of temperature, ice content and moisture content are used as prognostic variables and the rate term, accounting for the contribution of the phase change between water and ice, is shown explicitly in both the energy and mass balance equations. The models must be solved by a numerical method with an iterative process, and the rate term of the phase change needs to be pre-estimated at the beginning in each iteration step. Since the rate term of the phase change in the energy equation is closely related to the release or absorption of the great amount of fusion heat, a small error in the rate term estimation will introduce greater error in the energy balance, which will amplify the error in the temperature calculation and in turn, cause problems for the numerical solution convergence. In this work, in order to first reduce the trouble, the methodology of the variable transformation is applied to a simplified frozen soil model used currently, which leads to new frozen soil scheme used in this work. In the new scheme, the enthalpy and the total water equivalent are used as predictive variables in the governing equations to replace temperature, volumetric soil moisture and ice content used in many current models. By doing so, the rate terms of the phase change are not shown explicitly in both the mass and energy equations and its pre-estimation is avoided. Secondly, in order to solve this new scheme more functionally, the development of the numerical scheme to the new scheme is described and a numerical algorithm appropriate to the numerical scheme is developed. In order to evaluate the new scheme of the frozen soil model and its relevant algorithm, a series of model evaluations are conducted by comparing numerical results from the new model scheme with three observational data sets. The comparisons show that the results from the model are in good agreement with these data sets in both the change trend of variables and their magnitude values, and the new scheme, together with the algorithm, is more efficient and saves more computer time. 展开更多
关键词 simplified frozen soil model variable transformation enthalpy and total water equivalent numerical algorithm model validation
下载PDF
Long-term organic and inorganic fertilizations enhanced basic soil productivity in a fluvo-aquic soil 被引量:8
11
作者 ZHA Yan WU Xue-ping +5 位作者 GONG Fu-fei XU Ming-gang ZHANG Hui-min CHEN Li-ming HUANG Shao-min CAI Dian-xiong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2477-2489,共13页
The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive ca... The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P〈0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha^(–1) when SOC stock increased 1 t C ha^(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone. 展开更多
关键词 soil organic carbon basic soil productivity long-term fertilization DSSAT model fluvo-aquic soil wheat-maize rotation
下载PDF
An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing 被引量:6
12
作者 Yi ZHOU Bing GUO +1 位作者 ShiXin WANG HePing TAO 《Journal of Arid Land》 SCIE CSCD 2015年第3期304-317,共14页
Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been c... Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia. 展开更多
关键词 wind erosion estimation model soil erodibility snow cover days aridity Inner Mongolia
下载PDF
Fractional description of mechanical property evolution of soft soils during creep 被引量:16
13
作者 De-shun YIN Yan-qing LI +1 位作者 Hao WU Xiao-meng DUAN 《Water Science and Engineering》 EI CAS CSCD 2013年第4期446-455,共10页
The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal beh... The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure. 展开更多
关键词 variable-order fractional model fractional order soil creep evolution ofmechanical properties soft soil
下载PDF
Disturbed state concept as unified constitutive modeling approach 被引量:5
14
作者 Chandrakant S.Desai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第3期277-293,共17页
A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeforma... A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license 展开更多
关键词 Disturbed state concept (DSC)Constitutive model Parameters soils Interfaces Validations
下载PDF
Root length density distribution and associated soil water dynamics for tomato plants under furrow irrigation in a solar greenhouse 被引量:3
15
作者 QIU Rangjian DU Taisheng KANG Shaozhong 《Journal of Arid Land》 SCIE CSCD 2017年第5期637-650,共14页
Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in wat... Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions. 展开更多
关键词 root length density distribution HYDRUS-2D model soil water content irrigation scheduling greenhouse
下载PDF
Vortex-Induced Vibrations of A Free-Spanning Pipe Based on A Nonlinear Hysteretic Soil Model at the Shoulders 被引量:1
16
作者 GAO Xi-feng XIE Wu-de XU Wan-hai 《China Ocean Engineering》 SCIE EI CSCD 2020年第3期328-340,共13页
The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculat... The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculated with a nonlinear hysteretic soil model. For the VIV in the middle span, a classic van der Pol wake oscillator is adopted. Based on the Euler-Bernoulli beam theory, the vibration equations of the pipe are obtained which are different in the middle span and at the two end shoulders. The static configuration of the pipe is firstly calculated and then the VIV is simulated.The present model is validated with the comparisons of VIV experiment, pipe-soil interaction experiment and the simulation results of VIV of free-spanning pipes in which the seabed soil is modelled with spring-dashpots. With the present model, the influence of seabed soil on the VIV of a free-spanning pipe is analyzed. The parametric studies show that when the seabed soil has a larger suction area, the pipe vibrates with smaller bending stresses and is safer.While with the increase of the shear strength of the seabed soil, the bending stresses increase and the pipe faces more danger. 展开更多
关键词 free-spanning pipe vortex-induced vibrations nonlinear hysteretic soil model bending stresses
下载PDF
An improved Mesri creep model for unsaturated weak intercalated soils 被引量:10
17
作者 祝艳波 余宏明 《Journal of Central South University》 SCIE EI CAS 2014年第12期4677-4681,共5页
The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was establ... The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils. 展开更多
关键词 unsaturated soils creep matric suction improved Mesri model
下载PDF
An experimental study of salt expansion in sodium saline soils under transient conditions 被引量:11
18
作者 WAN Xusheng YOU Zhemin +1 位作者 WEN Haiyan William CROSSLEY 《Journal of Arid Land》 SCIE CSCD 2017年第6期865-878,共14页
Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temp... Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temperatures is not clear. In this study, we conducted a series of cooling experiments combined with salt crystallization to study this mechanism, and employed an ionic model to calculate the supersaturation ratio of the solution. During the experiments, the strength and the process of salt expansion were examined under different cooling rates and various crystal morphologies. The relationship between temperature and supersaturation ratio under transient conditions was also considered. Results indicate that the initial supersaturation ratio of a sodium sulfate solution is closely related to environmental conditions, and that this ratio decreases with slowing the cooling rates and stabilizing the crystal forms. Higher initial supersaturation ratios lead to an increased non-steady-state zone, resulting in less salt expansion. On the other hand, chloride ion content has a distinct influence on the crystallization supersaturation ratio of the sodium sulfate solution, and higher chloride ion content can inhibit salt expansion in sodium saline soils. These findings help explain salt expansion mechanisms in complex conditions such as seasonally frozen soils, and thus help search for improved methods of preventing salt expansion in sulfate saline soils. 展开更多
关键词 sulfate saline soil supersaturation ratio ionic model cooling rate salt expansion
下载PDF
An analytical p-y curve method based on compressive soil pressure model in sand soil 被引量:1
19
作者 JIANG Jie FU Chen-zhi +2 位作者 WANG Shun-wei CHEN Chao-qi OU Xiao-duo 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1987-2004,共18页
With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of... With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile. 展开更多
关键词 laterally loaded piles compressive soil pressure model separation effect of pile-soil interface coefficient of circumferential friction resistance analytical p-y curve finite difference method
下载PDF
Unsaturated Creep Behaviors of Weak Intercalated Soils in Soft Rock of Badong Formation 被引量:4
20
作者 ZHU Yan-Bo YU Hong-Ming 《Journal of Mountain Science》 SCIE CSCD 2015年第6期1460-1470,共11页
The cutting slopes in soft rock of redbed appeared in Yichang-Badong highway often suffer from the instability along weak intercalations, so the creep behaviors of weak intercalated soils are crucially important for t... The cutting slopes in soft rock of redbed appeared in Yichang-Badong highway often suffer from the instability along weak intercalations, so the creep behaviors of weak intercalated soils are crucially important for the stability of cutting slopes. Because the deformation of weak intercalated soils is significantly affected by water content due to the strong water sensitivity, it is necessary to study the influence of matric suction on the creep behaviors of weak intercalated soils. In order to find out the unsaturated creep characters of weak intercalated soils, a GDS unsaturated triaxial apparatus was used. Then the triaxial creep experiments on weak intercalated soil samples under varying matric suction were conducted to obtain the unsaturated creep curves. The results show that the weak intercalated soils have obvious creep behaviors, and the creep strain is in nonlinear relationship with stress and time. When the matric suction is constant, a larger deviator stress will lead to a larger creep strain; When the deviator stress is constant, a smaller matric suction will lead to a larger creep strain. Based on the Mesri creep model, an improved creep model for weak intercalated soils under varying matric suction was established, in which the relationship of stress-strain was expressed with a hyperbolic function, and the relationship of strain-time was expressed with power functions in stages. Then an unsaturated creep model including stress-matric suction-strain-time for weak intercalated soils was established based on the power function relationship between matric suction and Ed(a parameter of the improved creep model). The comparison of the calculated values of creep model and the experimental values shows that the creep behaviors of weak intercalated soils can be predicted by the unsaturated creep model by and large. 展开更多
关键词 Badong formation Weak intercalated soils Unsaturated creep behaviors soil triaxial apparatus Creep model
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部