期刊文献+
共找到694篇文章
< 1 2 35 >
每页显示 20 50 100
Failure behavior and strength model of blocky rock mass with and without rockbolts
1
作者 Chun Zhu Xiansen Xing +4 位作者 Manchao He Zhicheng Tang Feng Xiong Zuyang Ye Chaoshui Xu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期747-762,共16页
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme... To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks. 展开更多
关键词 Blocky rock mass Rockbolt ground support Uniaxial compression test failure mechanism Uniaxial compressive strength model
下载PDF
Considerations of rock dilation on modeling failure and deformation of hard rocks-a case study of the mine-by test tunnel in Canada 被引量:9
2
作者 Xingguang Zhao Meifeng Cai MCai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期338-349,共12页
For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely t... For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data. 展开更多
关键词 hard rocks brittle failure deformation dilation angle model confinement plastic shear strain mine-by test tunnel
下载PDF
Failure behavior of soil-rock mixture slopes based on centrifuge model test 被引量:5
3
作者 WANG Teng ZHANG Ga 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1928-1942,共15页
The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading condi... The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation. 展开更多
关键词 Soil ROCK MIXTURE SLOPE stability SLOPE failure CENTRIFUGE model test
下载PDF
Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks 被引量:12
4
作者 Xiaoming Sun Chengwei Zhao +3 位作者 Yong Zhang Feng Chen Shangkun Zhang Kaiyuan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期291-302,共12页
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ... To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks. 展开更多
关键词 failure mechanism Physical model test 3DEC Layered soft rocks Large deformation
下载PDF
Model test to investigate failure mechanism and loading characteristics of shallow-bias tunnels with small clear distance 被引量:10
5
作者 雷明锋 林大涌 +3 位作者 杨伟超 施成华 彭立敏 黄娟 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3312-3321,共10页
Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias t... Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance. 展开更多
关键词 shallow-bias tunnels with small spacing failure mechanism loading characteristics model test
下载PDF
Test selection and optimization for PHM based on failure evolution mechanism model 被引量:8
6
作者 Jing Qiu Xiaodong Tan +1 位作者 Guanjun Liu Kehong L 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期780-792,共13页
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse... The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level. 展开更多
关键词 test selection and optimization (TSO) prognostics and health management (PHM) failure evolution mechanism model (FEMM) adaptive simulated annealing genetic algorithm (ASAGA).
下载PDF
Indocyanine green clearance test combined with MELD score in predicting the short-term prognosis of patients with acute liver failure 被引量:27
7
作者 Hong-Ling Feng Qian Li +2 位作者 Lin Wang Gui-Yu Yuan Wu-Kui Cao 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2014年第3期271-275,共5页
BACKGROUND: Acute liver failure(ALF) is an acute severe deterioration of liver function with high mortality. Early and accurate prognostic assessment of patients with ALF is critically important. Although the model fo... BACKGROUND: Acute liver failure(ALF) is an acute severe deterioration of liver function with high mortality. Early and accurate prognostic assessment of patients with ALF is critically important. Although the model for end-stage liver disease(MELD) scores and King’s College Hospital(KCH) criteria are well-accepted as predictive tools, their accuracy is unsatisfactory.The indocyanine green(ICG) clearance test(ICGR15, ICG retention rate at the 15 minutes) is a sensitive indicator of liver function. In this study, we investigated the efficacy of the ICGR15 for the short-term prognosis in patients with ALF. We compared the predictive value of ICGR15 with the MELD scores and KCH criteria.METHODS: Sixty-nine patients who had been diagnosed with ALF were recruited retrospectively. ICGR15 had been performed by ICG pulse spectrophotometry and relevant clinical and laboratory indices were analyzed within 24 hours of diagnosis.In addition, the MELD scores and KCH criteria were calculated.RESULTS: The three-month mortality of all patients was 47.83%.Age, serum total bilirubin and creatinine concentrations,international normalized ratio for prothrombin time, ICGR15,MELD scores and KCH criteria differed significantly between surviving and deceased patients. A positive correlation was observed between ICGR15 and MELD scores(r=0.328, P=0.006).The ICGR15-MELD model, Logit(P)=0.096×ICGR15+0.174 ×MELD score–9.346, was constructed by logistic regression analysis. The area under the receiver operating characteristic curve was 0.855. When set the cut-off point to-0.4684, the sensitivity was 87.90% and specificity, 72.20%. The area under the receiver operating characteristic curve of the ICGR15-MELD model(0.855) was significantly higher than that of the ICGR15(0.793), MELD scores(0.776) and KCH criteria(0.659).Based on this cut-off value, the patients were divided into two groups. The mortality was 74.36% in the first group(ICGR15-MELD≥-0.4686) and 13.33% in the second group(ICGR15-MELD<-0.4686), with a significant difference between the two groups(χ2=25.307, P=0.000).CONCLUSION: The ICGR15-MELD model is superior to the ICGR15, MELD scores, and KCH criteria in predicting the shortterm prognosis of patients with ALF. 展开更多
关键词 acute liver failure indocyanine green clearance test model for end-stage liver disease PROGNOSIS
下载PDF
Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths 被引量:1
8
作者 Zhi Zheng Hongyu Xu +3 位作者 Kai Zhang Guangliang Feng Qiang Zhang Yufei Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期117-136,共20页
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona... Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads. 展开更多
关键词 True triaxial static and disturbance test Mechanical properties failure mechanism and precursor Intermittent disturbance effect Fractional mechanical model
下载PDF
Failure mechanism of a large-scale composite deposits caused by the water level increases
9
作者 ZHANG Xin TU Guo-xiang +3 位作者 LUO Qi-feng TANG Hao ZHANG Yu-lin LI An-run 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1369-1384,共16页
The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the L... The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the Lancang River in Southwest China as a study case,the origin of the deposits was analyzed based on the field investigation and a multi-material model was established in the physical model test.Combined with numerical simulation,the failure mechanism of the composite deposits during reservoir water level variations was studied.The results indicate that the deformation of the large-scale composite deposits is a staged sliding mode during the impoundment process.The first slip deformation is greatly affected by the buoyancy weight-reducing effect,and the permeability of soil and variation in the water level are the factors controlling slope deformation initiation.The high water sensitivity and low permeability of fine grained soil play an important role in the re-deformation of deposits slope.During the impoundment process,the deformation trend of the deposit slope is decreasing,and vertical consolidation of soil and increasing hydrostatic pressure on the slope surface are the main reasons for deformation attenuation.It is considered that the probability of large-scale sliding of the deposits during the impoundment period is low.But the damage caused by local bank collapse of the deposit slope still needs attention.The results of this paper will further improve our understanding of the failure mechanism of composite deposits caused by water level increases and provide guidance for the construction of hydropower stations. 展开更多
关键词 Composite deposits Reservoir water level rise Physical model test Finite-differencemethod failure mechanism
下载PDF
Mechanical characteristic and failure mechanism of joint with composite sucker rod
10
作者 Yan-Wen Zhang Jia-Qi Che +4 位作者 Han-Xiang Wang Jin Zhang Feng Li Ming-Chao Du Yu-Ting Wang 《Petroleum Science》 SCIE EI CSCD 2023年第5期3172-3183,共12页
Composite sucker rods are widely used in oil fields because of light weight,high strength,and corrosion resistance.Bonded technology becomes the primary connection method of composites.However,the joints with composit... Composite sucker rods are widely used in oil fields because of light weight,high strength,and corrosion resistance.Bonded technology becomes the primary connection method of composites.However,the joints with composite sucker rods are prone to debone and fracture.The connected characteristics are less considered,so the failure mechanism of the joint is still unclear.Based on the cohesive zone model(CZM)and the Johnson-Cook constitutive model,a novel full-scale numerical model of the joint with composite sucker rod was established,and verified by pull-out experiments.The mechanical properties and slip characteristics of the joint were studied,and the damaged procession of the joint was explored.The results showed that:a)the numerical model was in good agreement with the experimental results,and the error is within 5%;b)the von Mises stress,shear stress,and interface stress distributed symmetrically along the circumferential path increased gradually from the fixed end to the loading end;c)the first-bonded interface near the loading end was damaged at first,followed by debonding of the second-bonded interface,leading to the complete shear fracture of the epoxy,and resulted in the debonding of the joint with composite sucker rod,which can provide a theoretical basis for the structural design and optimization of the joint. 展开更多
关键词 Joint with composite sucker rod Numerical model Connected characteristics failure mechanism Tensile tests
下载PDF
Damage constitutive model of lunar soil simulant geopolymer under impact loading
11
作者 Hanyan Wang Qinyong Ma Qianyun Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1059-1071,共13页
Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properti... Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properties of lunar soil by establishing a constitutive relationship is critical for providing a theoretical basis for its damage evolution.In this paper,a split Hopkinson pressure bar(SHPB)device was used to perform three sets of impact tests under different pressures on a lunar soil simulant geopolymer(LSSG)with sodium silicate(Na_(2)SiO_(3))contents of 1%,3%,5%and 7%.The dynamic stressestrain curves,failure modes,and energy variation rules of LSSG under different pressures were obtained.The equation was modified based on the ZWT viscoelastic constitutive model and was combined with the damage variable.The damage element obeys the Weibull distribution and the constitutive equation that can describe the mechanical properties of LSSG under dynamic loading was obtained.The results demonstrate that the dynamic compressive strength of LSSG has a marked strain-rate strengthening effect.Na_(2)SiO_(3) has both strengthening and deterioration effects on the dynamic compressive strength of LSSG.As Na_(2)SiO_(3) grows,the dynamic compressive strength of LSSG first increases and then decreases.At a fixed air pressure,5%Na_(2)SiO_(3) had the largest dynamic compressive strength,the largest incident energy,the smallest absorbed energy,and the lightest damage.The ZWT equation was modified according to the stress response properties of LSSG and the range of the SHPB strain rate to obtain the constitutive equation of the LSSG,and the model’s correctness was confirmed. 展开更多
关键词 Lunar soil simulant geopolymer(LSSG) Split hopkinson pressure bar(SHPB)test Constitutive model Energy analysis failure mode
下载PDF
A Dugdale model based geometrical amplifier enables the measurement of separation-to-failure for a cohesive interface
12
作者 Yu-Jie Wei~(a)) State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences, Beijing 100190,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第1期25-29,共5页
Regardless of all kinds of different formulae used for the traction-separation relationship in cohesive zone modeling,the peak tractionσ_m and the separation-to-failureδ_0(or equivalently the work-to-separationΓ) a... Regardless of all kinds of different formulae used for the traction-separation relationship in cohesive zone modeling,the peak tractionσ_m and the separation-to-failureδ_0(or equivalently the work-to-separationΓ) are the primary parameters which control the interfacial fracture behaviors. Experimentally,it is hard to determine those quantities,especially forδ_0,which occurs in a very localized region with possibly complicated geometries by material failure.Based on the Dugdale model,we show that the separation-to-failure of an interface could be amplified by a factor of L/r_p in a typical peeling test,where L is the beam length and r_p is the cohesive zone size.Such an amplifier makesδ_0 feasible to be probed quantitatively from a simple peeling test. The method proposed here may be of importance to understanding interfacial fractures of layered structures,or in some nanoscale mechanical phenomena such as delamination of thin films and coatings. 展开更多
关键词 cohesive zone dugdale model separation-to-failure thin film peeling test
下载PDF
Failure characteristics and its influencing factors of talus-derived rock mass during open-pit mining 被引量:1
13
作者 王贵和 杨宇友 +1 位作者 张辉 张子新 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期462-471,共10页
The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived... The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived rock mass. The different types of failure modes of the talus-derived rock mass were introduced and a possible failure mechanism relation between the failure zone and the structure of the talus-derived rock mass was also shown. The physical model test results indicate that the rainfall has significant influence on the stability and failure modes of talus-derived rock mass during open-pit mining. The development of the seepage area caused by rainfall initiates the localized failure in that particular area, and the initiation of localized instability is mainly induced by stress changes concentrated in the seepage area. 展开更多
关键词 talus-derived rock mass model test failure mode RAINFALL open-pit mining
下载PDF
Centrifugal model tests and numerical simulations for barrier dam break due to overtopping 被引量:6
14
作者 ZHAO Tian-long CHEN Sheng-shui +1 位作者 FU Chang-jing ZHONG Qi-ming 《Journal of Mountain Science》 SCIE CSCD 2019年第3期630-640,共11页
The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Ba... The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Based on the experimental results, failure process and mechanism of barrier dam due to overtopping are analyzed and further verified by simulating the experimental overtopping failure process. The results indicate that the barrier dam will develop during the entire process of overtopping in the width direction, whereas the breach will cease to develop at an early stage in the depth direction because of the large particles that accumulate on the downstream slope. Moreover, headcut erosion can be clearly observed in the first two stages of overtopping, and coarsening on the downstream slope occurs in the last stage of overtopping. Thus, the bottom part of the barrier dam can survive after dam breaching and full dam failure becomes relatively rare for a barrier dam. Furthermore, the remaining breach would be smaller than that of a homogeneous cohesive dam under the same conditions. 展开更多
关键词 BARRIER DAM OVERTOPPING failure mechanism CENTRIFUGAL model test NUMERICAL simulation
下载PDF
Modelling the brittle rock failure by the quaternion-based bonded-particle model in DEM
15
作者 Tao Zhao Philip E.F.Collins 《Rock Mechanics Bulletin》 2024年第2期87-95,共9页
This paper presents an investigation of brittle rock failure by the quaternion-based bonded-particle model in discrete element method(DEM).Unlike traditional approaches that utilize Euler angles or rotation matrices,t... This paper presents an investigation of brittle rock failure by the quaternion-based bonded-particle model in discrete element method(DEM).Unlike traditional approaches that utilize Euler angles or rotation matrices,this model employs unit quaternions to represent the spatial rotations of particles.This method simplifies the rep-resentation of 3D rotations,providing a more intuitive framework for modelling complex interactions in granular materials.The numerical model was validated by the uniaxial compression tests on rock,with good agreement with well-documented experimental data in terms of the rock uniaxial compression strength(UCS)and failure mode.During loading,the rock sample demonstrated a linear-elastic response at an axial strain of smaller than 0.45%.However,as internal bond breakage accumulated,this linear relationship weakened,and the stress-strain curve began to deviate from its initial linear trajectory.The bond breakage and the overall deformation of the rock were primarily controlled by the shear bonding force.The UCS was achieved at an axial strain of 0.625%,at which point the internal shear bonding force chains were predominantly aligned vertically.The brittle failure occurred when the internal damage of solids nucleated to form an interconnected failure plane,accompanied by a sharp rise in the internal damage ratio.The area of failure plane increased with the loading strain rate,gradually transforming the failure pattern from the local damage to a complete fragmentation. 展开更多
关键词 Brittle failure QUATERNION DEM bonded model Uniaxial compression test Rate dependent Internal damage
原文传递
Centrifuge model tests on pile-reinforced slopes subjected to drawdown 被引量:5
16
作者 Sujia Liu Fangyue Luo Ga Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1290-1300,共11页
Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(d... Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown. 展开更多
关键词 SLOPE PILE DRAWDOWN failure REINFORCEMENT Centrifuge model test
下载PDF
Geomechanical model test for analysis of surrounding rock behaviours in composite strata 被引量:5
17
作者 Linken Shi Hui Zhou +2 位作者 Ming Song Jingjing Lu Zhenjiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期774-786,共13页
Due to the large differences in physico-mechanical pro perties of composite strata,jamming,head sinking and other serious consequences occur frequently during tunnel boring machine(TBM)excavation.To analyse the stabil... Due to the large differences in physico-mechanical pro perties of composite strata,jamming,head sinking and other serious consequences occur frequently during tunnel boring machine(TBM)excavation.To analyse the stability of surrounding rocks in composite strata under the disturbance of TBM excavation,a geomechanical model test was carried out based on the Lanzhou water supply project.The evolution patterns and distribution characteristics of the strain,stress,and tunnel deformation and fracturing were analysed.The results showed that during TBM excavation in the horizontal composite formations(with upper soft and lower hard layers and with upper hard and lower soft layers),a significant difference in response to the surrounding rocks can be observed.As the strength ratio of the surrounding rocks decreases,the ratio of the maximum strain of the hard rock mass to that of the relatively soft rock mass gradually decreases.The radial stress of the relatively soft rock mass is smaller than that of the hard rock mass in both types of composite strata,indicating that the weak rock mass in the composite formation results in the difference in the mechanical behaviours of the surrounding rocks.The displacement field of the surrounding rocks obtained by the digital speckle correlation method(DSCM)and the macro-fracture morphology after tunnel excavation visually reflected the deformation difference of the composite rock mass.Finally,some suggestions and measures were provided for TBM excavation in composite strata,such as advance geological forecasting and effective monitoring of weak rock masses. 展开更多
关键词 model test Tunnel excavation Composite strata Deformation and failure mechanism Stability analysis
下载PDF
Deformation and failure modes of composite foundation with sub-embankment plain concrete piles 被引量:2
18
作者 Qian Su JunJie Huang 《Research in Cold and Arid Regions》 CSCD 2013年第5期614-625,共12页
With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on... With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented. 展开更多
关键词 centrifuge model test composite foundation plain concrete pile deformation and failure modes EMBANKMENT soft ground
下载PDF
Micro-failure process and failure mechanism of brittle rock under uniaxial compression using continuous real-time wave velocity measurement 被引量:3
19
作者 WU Zhi-jun WANG Zhi-yang +2 位作者 FAN Li-feng WENG Lei LIU Quan-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期556-571,共16页
In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indi... In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indicate that the evolutions of wave velocities became progressively anisotropic under uniaxial loading due to the direction-dependent development of micro-damage.A wave velocity model considering the inner anisotropic crack evolution is proposed to accurately describe the variations of wave velocities during uniaxial compression testing.Based on which,the effective elastic parameters are inferred by a transverse isotropic constitutive model,and the evolutions of the crack density are inversed using a self-consistent damage model.It is found that the propagation of axial cracks dominates the failure process of brittle rock under uniaxial loading and oblique shear cracks develop with the appearance of macrocrack. 展开更多
关键词 elastic wave velocity brittle rock failure uniaxial compression test continuous real-time measurement anisotropic damage evolution theory and modelling
下载PDF
Model test study on the formation and development of underground erosion ground fissures in the Kenya Rift Valley 被引量:2
20
作者 LIU Yang PENG Jian-bing +3 位作者 JIANG Fu-qiang LU Quan-zhong ZHU Feng-ji Xu Qiang 《Journal of Mountain Science》 SCIE CSCD 2022年第4期1037-1050,共14页
The Kenya Rift Valley is relatively prone to underground erosion ground fissures and associated disasters,which gravely hinder local engineering construction and economic development.In this research,we performed fiel... The Kenya Rift Valley is relatively prone to underground erosion ground fissures and associated disasters,which gravely hinder local engineering construction and economic development.In this research,we performed field and experimental studies on ground fissures in the Kenya Rift Valley area,and determined the structural characteristics of underground erosion fissures.Based on a geological survey of the area,we generalized a geological model for typical ground fissures and reproduced the intermediate process of ground fissure propagation using a large-scale physical model test.Further,the development process of underground erosion fissures were categorized into four stages:uniform infiltration,preferential infiltration,cavity expansion,and collapse formation stages.During the development of underground erosion fissures,water content was distributed symmetrically along the fissures,and these fissures acted as the primary infiltration paths of water.When the ground collapsed,the increase in negative pore water pressure was greater,whereas the increase in positive pore water pressure was less in the shallow soil;moreover,in the deep soil,the increase in positive pore water pressure was greater than that of negative pore water pressure.Additionally,the earth pressure increment initially increased and then decreased with the development of erosion.During underground erosion collapse,the water content and pore water pressure appeared to increase and decrease rapidly.These results can be employed to predict the occurrence of underground erosion ground fissures and the resulting soil collapse. 展开更多
关键词 Kenya Rift Valley model test Seepage failure Underground erosion ground fissure
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部