Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conv...Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conventional AC DC AC converter to increase the power factor (PF) of the system input side. MPTC is used to select optimal voltage space vector to enable the system to have satisfactory torque and flux control effect. The resultant MPTC strategy not only makes the MC fed PMSM system operate reliably and have perfect control performance, but also makes the PF of the system input side be 1. Compared with direct torque control (DTC), the proposed MPTC strategy guarantees that MC fed PMSM has better command following characteristics in the presence of variation of load torque and tracking reference speed. Simulation results verify the feasibility and effectiveness of the proposed strategy.展开更多
Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control...Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control(ANFTSMC)model predictive torque control(MPTC)strategy is proposed.A new adaptive exponential approach rate is designed,and the traditional switching function sgn()is replaced by the hyperbolic tangent function tanh().A new ANFTSMC with extended state observer(ESO)is constructed as the speed regulator of the system,and ESO can observe disturbances.This improved method weakens chattering and improves the robustness of the system.To realize sensorless control of the speed control system,an ESO speed observer based on tanh(Fal)is constructed.Compared with the traditional ESO based on Fal function,the observation error is smaller,and the observation accuracy is higher.Finally,aiming at the model predictive torque control strategy used,a new objective function construction method is proposed,which avoids the design of weight coefficient,and the traditional voltage vector selection method is improved and optimized,which reduces the calculation amount of the algorithm.展开更多
A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to...A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
多相永磁同步电机驱动系统在低压大功率、高可靠性的应用场合日受青睐和瞩目。首先研究了适用于五相永磁同步电机系统的传统有限集模型预测转矩控制(finite-control-set model predictive torque control,FCS-MPTC)算法,为了消除d3-q3...多相永磁同步电机驱动系统在低压大功率、高可靠性的应用场合日受青睐和瞩目。首先研究了适用于五相永磁同步电机系统的传统有限集模型预测转矩控制(finite-control-set model predictive torque control,FCS-MPTC)算法,为了消除d3-q3谐波子空间的低次电流谐波,构造了包含谐波项的目标函数。然后,为了减小FCS-MPTC算法实现时带来的巨大计算量,提出了一种基于转矩与磁链无差拍估算的每个控制周期内电压矢量控制集优化方法。所提算法不仅保持了传统FCS-MPTC算法优越的稳态性能、快速的动态响应和低次电流谐波抑制能力,同时显著减少了数字实现的运算量。最后,将所提算法分别与两种传统FCS-MPTC算法进行半实物实验对比分析,验证了所提算法的正确性和有效性。展开更多
基金National Natural Science Foundation of China(No.61463025)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conventional AC DC AC converter to increase the power factor (PF) of the system input side. MPTC is used to select optimal voltage space vector to enable the system to have satisfactory torque and flux control effect. The resultant MPTC strategy not only makes the MC fed PMSM system operate reliably and have perfect control performance, but also makes the PF of the system input side be 1. Compared with direct torque control (DTC), the proposed MPTC strategy guarantees that MC fed PMSM has better command following characteristics in the presence of variation of load torque and tracking reference speed. Simulation results verify the feasibility and effectiveness of the proposed strategy.
基金Project of National Natural Science Foundation of China(No.61863023)。
文摘Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control(ANFTSMC)model predictive torque control(MPTC)strategy is proposed.A new adaptive exponential approach rate is designed,and the traditional switching function sgn()is replaced by the hyperbolic tangent function tanh().A new ANFTSMC with extended state observer(ESO)is constructed as the speed regulator of the system,and ESO can observe disturbances.This improved method weakens chattering and improves the robustness of the system.To realize sensorless control of the speed control system,an ESO speed observer based on tanh(Fal)is constructed.Compared with the traditional ESO based on Fal function,the observation error is smaller,and the observation accuracy is higher.Finally,aiming at the model predictive torque control strategy used,a new objective function construction method is proposed,which avoids the design of weight coefficient,and the traditional voltage vector selection method is improved and optimized,which reduces the calculation amount of the algorithm.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)
文摘A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.
文摘多相永磁同步电机驱动系统在低压大功率、高可靠性的应用场合日受青睐和瞩目。首先研究了适用于五相永磁同步电机系统的传统有限集模型预测转矩控制(finite-control-set model predictive torque control,FCS-MPTC)算法,为了消除d3-q3谐波子空间的低次电流谐波,构造了包含谐波项的目标函数。然后,为了减小FCS-MPTC算法实现时带来的巨大计算量,提出了一种基于转矩与磁链无差拍估算的每个控制周期内电压矢量控制集优化方法。所提算法不仅保持了传统FCS-MPTC算法优越的稳态性能、快速的动态响应和低次电流谐波抑制能力,同时显著减少了数字实现的运算量。最后,将所提算法分别与两种传统FCS-MPTC算法进行半实物实验对比分析,验证了所提算法的正确性和有效性。