期刊文献+
共找到377篇文章
< 1 2 19 >
每页显示 20 50 100
Dynamic response of mountain tunnel,bridge,and embankment along the Sichuan-Tibet transportation corridor to active fault based on model tests
1
作者 HUANG Beixiu QIAO Sijia +2 位作者 CHEN Xulei LI Lihui QI Shengwen 《Journal of Mountain Science》 SCIE CSCD 2024年第1期182-199,共18页
The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on dif... The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor. 展开更多
关键词 Dynamic response Engineering structure Sichuan-Tibet transportation corridor Active fault EARTHQUAKE Model test
下载PDF
Theoretical investigation on axial cyclic performance of monopile in sands using interface constitutive models
2
作者 Pan Zhou Jingpei Li +2 位作者 Kaoshan Dai Stefan Vogt Seyedmohsen Miraei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2645-2662,共18页
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c... Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses. 展开更多
关键词 PILES Cyclic degradation Load-transfer models Interface constitutive model Semi-analytical solution Model tests
下载PDF
A thermal stress loading technique for large-sized hot dry rock mechanical tests
3
作者 Huiling Ci Bing Bai +2 位作者 Hongwu Lei Yan Zou Jianfeng Liu 《Deep Underground Science and Engineering》 2024年第3期326-337,共12页
Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host fra... Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed. 展开更多
关键词 deep rock engineering high-temperature and high-stress conditions hot dry rock large-sized model test thermal stress loading
下载PDF
Study on Model Tests and Hydrodynamic Force Models for Free Spanning Submarine Pipelines Subjected to Earthquakes 被引量:3
4
作者 李明高 李昕 +2 位作者 董汝博 周晶 关炯 《China Ocean Engineering》 SCIE EI 2010年第2期305-320,共16页
A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model ... A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model tests are carried out to consider the effects of exciting wave directions and types. Based on the experimental results, two hydrodynamic force models derived from Morisen equation and Wake model are presented respectively. By use of hydrodynamic force models suitable for free spanning submarine pipelines under earthquakes, diseretized equations of motion are obtained and finite element models are established to analyze dynamic response of free spanning submarine pipeline subjected to multi-support seismic excitations. The comparison of numerical results with experimental results shows that the improved Morison and Wake hydrodynamic force models could satisfactorily predict dynamic response on the free spanning submarine pipelines subjected to earthquakes. 展开更多
关键词 free spanning submarine pipelines model tests hydrodynamic force models dynamic response analysis earthquke
下载PDF
Lateral earth pressure of granular backfills on retaining walls with expanded polystyrene geofoam inclusions under limited surcharge loading 被引量:1
5
作者 Kewei Fan Guangqing Yang +2 位作者 Weilie Zou Zhong Han Yang Shen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1388-1397,共10页
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t... Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests. 展开更多
关键词 Retaining wall Expanded polystyrene(EPS)geofoam Limited surcharge loading Lateral earth pressure Model test Prediction
下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
6
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 Explosive load Explosion resistance performance Model test POLYUREA Concrete box girder Numerical simulation
下载PDF
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane
7
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection Large-scale model test
下载PDF
Impact pressure of waves generated by landslides on bank slopes
8
作者 CAO Ting WANG Pingyi +1 位作者 QIU Zhenfeng LIU Jie 《Journal of Mountain Science》 SCIE CSCD 2024年第3期918-931,共14页
Impulse waves that are generated by landslides in narrow reservoir areas threaten the stability of buildings and bank slopes.To discuss the action process and evolution law of the wave pressure on bank slopes,a three-... Impulse waves that are generated by landslides in narrow reservoir areas threaten the stability of buildings and bank slopes.To discuss the action process and evolution law of the wave pressure on bank slopes,a three-dimensional physical model test that considers impulse waves generated by landslides was performed,and factors including landslide width,thickness,slope angles of the sliding surface,and bank slope angle were considered.Based on wave forms on the bank slopes,wave pressure curve characteristics,and peak value,the action process of wave pressure could be divided into the following stages:maximum pulsating pressure stage,wave impact stage(when waves break),and stationary pulsation stage.It was found that wave breaking is dependent on the value of the surf similarity parameterξ.The distribution pattern of impact pressure decays linearly on both sides of the maximum impact pressure point,and the attenuation degree decreases when it attains 40%of the maximum value.Thus,it is proposed that the prediction formula for the maximum effective impact pressure of the bank slope be related to the reciprocal of wave steepness,relative water depth,and slope rate.The prediction formula provides strong theoretical support for early safety warning and for predicting the bank slope under impulse waves generated by landslides. 展开更多
关键词 Model test Impact pressure Action stage Breaking discrimination Distribution model
下载PDF
Protective effect of retaining wall on rock avalanche:A case study of Nayong rock avalanche in China
9
作者 WANG Zhongfu SHI Fengge +3 位作者 HE Siming ZHANG Xusheng WANG Jingying LIU Enlong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1215-1230,共16页
Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partia... Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partially mitigate the magnitudes and consequences of such catastrophic events.We selected a rock avalanche in Nayong County,Guizhou Province,China as a case to study the effect of the location and height of a retaining wall on the dynamic characteristics of rock avalanche by using both actual terrain-based laboratory-model tests and coupled PFC3D-FLAC3D numerical simulations.Our findings demonstrate that a retaining wall can largely block a rock avalanche and its protective efficacy is significantly influenced by the integrity of the retaining wall.Coupled numerical simulation can serve as a powerful tool for analyzing the interaction between a rock avalanche and a retaining wall,facilitating precise observations of its deformation and destruction.The impact-curve characteristics of the retaining wall depend upon whether or not the rock avalanche-induced destruction is taken into account.The location of the retaining wall exerts a greater influence on the outcome compared to the height and materials of the retaining wall,while implementing a stepped retaining-wall pattern in accordance with the terrain demonstrates optimal efficacy in controlling rock avalanche. 展开更多
关键词 Rock avalanche Laboratory model test Retaining wall PFC^(3D) FLAC^(3D) Impact force
下载PDF
Crack mechanism of ground fissures in loess layer of Fenwei Basin, China
10
作者 LI Cong LU Quanzhong +2 位作者 WANG Feiyong LUO Wenchao XU Qiang 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1683-1696,共14页
The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation... The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground fissures in the loess layer remain inadequately investigated. To effectively prevent and control ground fissure disasters, physical model tests and the PFC(particle flow code) numerical simulation method are used to investigate the crack mechanism of buried ground fissures in the loess layer. The results show that there are two main cracks in the layer profile, which have a Y-shape morphology. As the dip angle of the preset cracks increased from 60° to 90°, the main deformation zone at the surface gradually shifted towards the footwall. The process of crack propagation from depth to surface is divided into five stages. Additionally, the results confirm the accuracy of the width of the rupture zone d2in the footwall calculated by the cantilever beam theory. These findings can offer theoretical guidance for determining the avoidance distance of ground fissures in loess regions, as well as for implementing disaster prevention and corresponding control measures for various stages of buried ground fissure propagation. 展开更多
关键词 Ground fissure Fenwei Basin Physical model test Particle flow code Crack propagation
下载PDF
Experimental Study on Towing Characteristics of Composite Bucket Wellhead Platform
11
作者 ZHANG Pu-yang LIU Ying-fei +2 位作者 LE Cong-huan DING Hong-yan BAI Yu 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期531-542,共12页
With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfie... With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfield development.However,traditional simple wellhead platforms are often discarded after a single use.In pursuit of a more costeffective approach to developing marginal oilfields,this paper proposes a new offshore oil field development facility—an integrated bucket foundation for wellhead platform.To verify the safety of its towing behavior and obtain the dynamic response characteristics of the structure,this paper takes a bucket integrated bucket foundation for wellhead platform with a diameter of 40 m as the research object.By combining physical model tests and numerical simulations,it analyzes the static stability and dynamic response characteristics of the structure during towing,complete with the effects of the draft,wave height,wave period,and towing point height,which produce the dynamic responses of the structure under different influence factors,such as roll angle,pitch angle,heave acceleration and towing force as well as the sensibility to transport variables.The results show that the integrated bucket foundation for wellhead platform is capable of self-floating towing,and its movement is affected by the local environment,which will provide a reference for actual projects. 展开更多
关键词 composite bucket foundation wellhead platform air flotation towing model test
下载PDF
Unstable evolution of railway slope under the rainfall-vibration joint action
12
作者 DONG Haoyu WANG Jiading +2 位作者 ZHANG Dengfei LI Lin XU Yuanjun 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1419-1431,共13页
Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few s... Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few scholars have explored the unstable evolution of railway slopes under the joint action of rainfall-vibration.Based on the model test of sandy soil slope,the unstable evolution process of slope under locomotive vibration,rainfall,and rainfall-vibration joint action conditions was simulated in this paper.By comparing and analyzing the variation trends of soil pressure and water content of slope under these conditions,the change laws of pore pressure under the influence of vibration and rainfall were explored.The main control factors affecting the stability of slope structure under the joint action conditions were further defined.Combined with the slope failure phenomena under these three conditions,the causes of slope instability resulting from each leading factor were clarified.Finally,according to the above conclusions,the unstable evolution of the slope under the rainfall-vibration joint action was determined.The test results show that the unstable evolution process of sandy soil slope,under the rainfall-vibration joint action,can be divided into:rainfall erosion cracking,vibration promotion penetrating,and slope instability sliding three stages.In the process of slope unstable evolution,rainfall and vibration play the roles of inducing and promoting slide respectively.In addition,the deep cracks,which are the premise for the formation of the sliding surface,and the violent irregular fluctuation of soil pressure,which reflects the near penetration of the sliding surface,constitute the instability characteristics of the railway slope together.This paper reveals the unstable evolution of sandy soil slopes under the joint action of rainfall-vibration,hoping to provide the theoretical basis for the early warning and prevention technology of railway slopes. 展开更多
关键词 Rainfall vibration joint action Small scale model tests Unstable evolution process Unstable characteristics Inducing sliding and promoting sliding
下载PDF
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test
13
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability Physical model test Surface 3D deformation Stability identification
下载PDF
Experimental study on the movement of oil spill under freeze-thaw action
14
作者 ZeLiang Ye JianGuo Lu +2 位作者 MingYi Zhang WanSheng Pei ShuTong Li 《Research in Cold and Arid Regions》 CSCD 2024年第3期111-120,共10页
Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In thi... Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In this study,a series of laboratory model experiments were carried out on the migration of oil leakage under freeze-thaw action,and the distributions of the soil temperature,unfrozen water content,and displacement were analyzed.The results showed that under freeze-thaw action,liquid water in soils migrated to the freezing front and accumulated.After the pipe cracked,oil pollutants first gathered at one side of the leak hole,and then moved around.The pipe wall temperature affected the soil temperature field,and the thermal influence range below and transverse the pipe wall(35–40 cm)was larger than that above the pipe wall(8 cm)owing to the soil surface temperature.The leaked oil's temperature would make the temperature of the surrounding soil rise.Oil would inhibit the cooling of the soils.Besides,oil migration was significantly affected by the gravity and water flow patterns.The freeze-thaw action would affect the migration of the oil,which was mainly manifested as inhibiting the diffusion and movement of oil when soils were frozen.Unfrozen water transport caused by freeze-thaw cycles would also inhibit oil migration.The research results would provide a scientific reference for understanding the relationship between the movement of oil pollutants,water,and soil temperature,and for establishing a waterheat-mass transport model in frozen soils. 展开更多
关键词 Freeze-thaw action Oil movement Soil temperature Unfrozen water content Model test
下载PDF
Numerical Calculations and Cold Tests for Flow Fields of a 220t/h Retrofitted Oil-Boiler
15
作者 朱世钧 程永元 +1 位作者 蔡崧 肖军 《Journal of Southeast University(English Edition)》 EI CAS 2000年第1期70-74,共5页
In this paper, cold simulation experiments and numerical calculations are conducted to predict 3 D flow field aerodynamics for an oil furnace after being retrofitted due to its fuel variation. K ε model and SIMPLE ... In this paper, cold simulation experiments and numerical calculations are conducted to predict 3 D flow field aerodynamics for an oil furnace after being retrofitted due to its fuel variation. K ε model and SIMPLE program under body fit coordination (BFC) system, in which TTM non orthogonal method is used to control the irregular geometric boundary, are adopted to solve the control equations. Model tests are conducted to check the calculation results, showing that they are in agreement with each other. Three different alternatives with different side window locations are also calculated to optimize the designs. The field retrofitting results show that the combination of cold tests with numerical calculations has prosperous application in retrofitting or renewing medium and small boilers. 展开更多
关键词 cold model test numerical calculation BFC boiler retrofitting
下载PDF
Comparative study of model tests on automatically formed roadway and gob-side entry driving in deep coal mines 被引量:19
16
作者 Qi Wang Manchao He +4 位作者 Shucai Li Zhenhua Jiang Yue Wang Qian Qin Bei Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期591-601,共11页
Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off str... Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars. 展开更多
关键词 Automatically formed roadway Roof cutting Bolt grouting Roadway control Model test
下载PDF
Wave Motion Compensation Scheme and Its Model Tests for the Salvage of An Ancient Sunken Boat 被引量:9
17
作者 叶家玮 陈远明 +3 位作者 王冬姣 刘月琴 宋鑫 黄元田 《China Ocean Engineering》 SCIE EI 2006年第4期635-643,共9页
The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at th... The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at the bottom of the South China Sea for more than 800 years. In order to protect the structure of the boat and the cultural relics inside to the largest extent, an open caisson is used to hold the sunken beat and the silts around before they are raised from the seabed all together as a whole. In the paper, first, the seakeeping model test of the system of the salvage barge and the open caisson is done to determine some important wave response parameters. And then a further experimental study of the ap- plication of the vertical hoisting jack and wave motion compensation scheme to the salvage of the sunken boat is carried out. In the model tests, the techniques of the integrative mechanic-electronic-hydraulic control, wave motion forecast and wave motion compensation are used to minimize the heave motion of the open caisson. The results of the model tests show that the heave motion of the open caisson can be reduced effectively by the use of the present method. 展开更多
关键词 model test SALVAGE wave motion compensation
下载PDF
Centrifuge model tests on pile-reinforced slopes subjected to drawdown 被引量:5
18
作者 Sujia Liu Fangyue Luo Ga Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1290-1300,共11页
Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(d... Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown. 展开更多
关键词 SLOPE PILE DRAWDOWN FAILURE REINFORCEMENT Centrifuge model test
下载PDF
Model tests on XCC-piled embankment under dynamic train load of high-speed railways 被引量:6
19
作者 Niu Tingting Liu Hanlong +1 位作者 Ding Xuanming Zheng Changjie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期581-594,共14页
Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under... Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder. 展开更多
关键词 piled embankment model test dynamic train load of high-speed railways XCC-pile M-shaped wave
下载PDF
Numerical Simulations and Model Tests of the Mooring Characteristic of A Tension Leg Platform Under Random Waves 被引量:4
20
作者 谷家扬 杨建民 吕海宁 《China Ocean Engineering》 SCIE EI CSCD 2013年第5期563-578,共16页
Analyzing the dynamic response and calculating the tendon tension of the mooring system are necessary for the structural design of a tension leg platform (TLP). The six-degree-of-freedom dynamic coupling responses a... Analyzing the dynamic response and calculating the tendon tension of the mooring system are necessary for the structural design of a tension leg platform (TLP). The six-degree-of-freedom dynamic coupling responses and the mooring characteristics of TLP under random waves are studied by using a self-developed program. Results are verified by the 1:40 scaling factor model test conducted in the State Key Laboratory of Ocean Engineering at Shanghai JiaoTong University. The mean, range, and standard deviation of the numerical simulation and model test are compared. The influences of different sea states and wave approach angles on the dynamic response and tendon tension of the mooring system are investigated. The acceleration in the center and corner of the deck is forecasted. 展开更多
关键词 TLP nonlinear stochastic waves model test coupled response
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部