This article considers three types of biological systems:the dengue fever disease model,the COVID-19 virus model,and the transmission of Tuberculosis model.The new technique of creating the integration matrix for the ...This article considers three types of biological systems:the dengue fever disease model,the COVID-19 virus model,and the transmission of Tuberculosis model.The new technique of creating the integration matrix for the Bernoulli wavelets is applied.Also,the novel method proposed in this paper is called the Bernoulli wavelet collocation scheme(BWCM).All three models are in the form system of coupled ordinary differential equations without an exact solution.These systems are converted into a system of algebraic equations using the Bernoulli wavelet collocation scheme.The numerical wave distributions of these governing models are obtained by solving the algebraic equations via the Newton-Raphson method.The results obtained from the developed strategy are compared to several schemes such as the Runge Kutta method,and ND solver in mathematical software.The convergence analyses are discussed through theorems.The newly implemented Bernoulli wavelet method improves the accuracy and converges when it is compared with the existing methods in the literature.展开更多
The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized tha...The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.展开更多
Background: Calotropis procera (C. procera), is an authentic plant naturally grown in the flora of Dead Sea region. Despite its toxicity, C. procera presents healing properties. However, it has not been implemented ye...Background: Calotropis procera (C. procera), is an authentic plant naturally grown in the flora of Dead Sea region. Despite its toxicity, C. procera presents healing properties. However, it has not been implemented yet in cosmetics as an active ingredient. Objective: The biological effects of C. procera callus extract on skin were elucidated solely and in combination with Dead Sea water (DSW). Methods: The capability of C. procera extract to protect against skin inflammation and irritation was tested on ex vivo human skin organ culture by LPS and SDS addition respectively. Viability and cytokine secretion were evaluated. The combination of C. procera extract with Dead Sea water was tested on full thickness skin equivalents. Gene expression and relevant biochemical markers for glycolysis, hypoxia and extracellular matrix balance were tested. Results: C. procera extract exhibits a protective biological activity against skin irritation and inflammation at the biochemical level. Furthermore, a combination of C. procera extract and DSW demonstrates a potential contribution for skin wellbeing via enhance energy production, resistance to hypoxia and extracellular matrix balance. Conclusions: Topical application of C. procera callus extract might support skin balance and wellbeing at the molecular level. Hence, it is recommended for new cosmetic formulae as standalone or in combination with Dead Sea water, in the effort to achieve anti-aging bio-activity that is working beyond skin aging symptoms, especially via skin calming effects and skin energy enhancement.展开更多
Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the ...Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.展开更多
Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochast...Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.展开更多
Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of vari...Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of various organs,such as the brain,heart,reproductive organs,and endocrine organs,which endanger human health.Therefore,it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation.The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies.In this article,we review the microwave exposure conditions,subjects used to establish injury models,the methods used for the assessment of the injuries,and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.展开更多
Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actu...Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fu^zy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory nctworks+ but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without lhctitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast, The results show that this approach can work effectively.展开更多
[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing t...[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing time and plant productivity, biological yield of forage sorghum were simulated and compared by using field experiment and linear regression analysis.[Result] The sowing time had an important influence on the plant productivity and biological yield of forage sorghum in autumn idle land. The plant productivity and biological yield of forage sorghum both decreased with the delay of sowing time.The regression model between plant fresh weight and sowing time was ?fresh=0.618-0.015x; the regression model between plant dry weight and sowing time was ?dry=0.184-0.005x; and the regression model between biological yield and sowing time was yield=29 126.461-711.448x. During July 23rd to August 30th, when the sowing time was delayed by 1 day, the plant fresh weight of forage sorghum was reduced by 0.015 g, the plant dry weight was reduced by 0.005 g, and the yield was reduced by 711.448 kg/hm2. [Conclusion] The three regression models established in this study will provide theoretical support for the production of forage sorghum.展开更多
Background: Positron emission tomography(PET) is a noninvasive method to characterize different metabolic activities of tumors, providing information for staging, prognosis, and therapeutic response of patients with c...Background: Positron emission tomography(PET) is a noninvasive method to characterize different metabolic activities of tumors, providing information for staging, prognosis, and therapeutic response of patients with cancer. The aim of this study was to evaluate the feasibility of18F-fludeoxyglucose(18F-FDG) and 3’-deoxy-3’-18F-fluorothymidine(18F-FLT) PET in predicting tumor biological characteristics of colorectal cancer liver metastasis.Methods: The uptake rate of18F-FDG and18F-FLT in SW480 and SW620 cells was measured via an in vitro cell uptake assay. The region of interest was drawn over the tumor and liver to calculate the maximum standardized uptake value ratio(tumor/liver) from PET images in liver metastasis model. The correlation between tracer uptake in liver metastases and VEGF, Ki67 and CD44 expression was evaluated by linear regression.Results: Compared to SW620 tumor-bearing mice, SW480 tumor-bearing mice presented a higher rate of liver metastases. The uptake rate of18F-FDG in SW480 and SW620 cells was 6.07% ± 1.19% and2.82% ± 0.15%, respectively(t = 4.69, P = 0.04); that of18F-FLT was 24.81% ± 0.45% and 15.57% ± 0.66%, respectively(t = 19.99, P < 0.001). Micro-PET scan showed that all parameters of FLT were significantly higher in SW480 tumors than those in SW620 tumors. A moderate relationship was detected between metastases in the liver and18F-FLT uptake in primary tumors(r = 0.73, P = 0.0019).18F-FLT uptake was also positively correlated with the expression of CD44 in liver metastases(r = 0.81, P = 0.0049).Conclusions: The uptake of18F-FLT in metastatic tumor reflects different biological behaviors of colon cancer cells.18F-FLT can be used to evaluate the metastatic potential of colorectal cancer in nude mice.展开更多
The inflection point is an important feature of sigmoidal height-diameter(H-D)models.It is often cited as one of the properties favoring sigmoidal model forms.However,there are very few studies analyzing the inflectio...The inflection point is an important feature of sigmoidal height-diameter(H-D)models.It is often cited as one of the properties favoring sigmoidal model forms.However,there are very few studies analyzing the inflection points of H-D models.The goals of this study were to theoretically and empirically examine the behaviors of inflection points of six common H-D models with a regional dataset.The six models were the Wykoff(WYK),Schumacher(SCH),Curtis(CUR),HossfeldⅣ(HOS),von Bertalanffy-Richards(VBR),and Gompertz(GPZ)models.The models were first fitted in their base forms with tree species as random effects and were then expanded to include functional traits and spatial distribution.The distributions of the estimated inflection points were similar between the two-parameter models WYK,SCH,and CUR,but were different between the threeparameter models HOS,VBR,and GPZ.GPZ produced some of the largest inflection points.HOS and VBR produced concave H-D curves without inflection points for 12.7%and 39.7%of the tree species.Evergreen species or decreasing shade tolerance resulted in larger inflection points.The trends in the estimated inflection points of HOS and VBR were entirely opposite across the landscape.Furthermore,HOS could produce concave H-D curves for portions of the landscape.Based on the studied behaviors,the choice between two-parameter models may not matter.We recommend comparing seve ral three-parameter model forms for consistency in estimated inflection points before deciding on one.Believing sigmoidal models to have inflection points does not necessarily mean that they will produce fitted curves with one.Our study highlights the need to integrate analysis of inflection points into modeling H-D relationships.展开更多
Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders,and it is a rapidly growing global public health issue.It is characterized by hyperglycemia,a condition involving a high blood...Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders,and it is a rapidly growing global public health issue.It is characterized by hyperglycemia,a condition involving a high blood glucose level brought on by deficiencies in insulin secretion,decreased activity of insulin,or both.Prolonged effects of diabetes include cardiovascular problems,retinopathy,neuropathy,nephropathy,and vascular alterations in both macro-and micro-blood vessels.In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis,identifying targets,and reviewing novel treatment options and medications.Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences.The most popular in vivo studies involves the small animal models,such as rodent models,chemically induced diabetogens like streptozotocin and alloxan,and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals.Other models include virally induced models,diet/nutrition induced diabetic animals,surgically induced models or pancreatectomy models,and non-obese models.Large animals or non-rodent models like porcine(pig),canine(dog),nonhuman primate,and Zebrafish models are also outlined.The in vitro models discussed are murine and human beta-cell lines and pancreatic islets,human stem cells,and organoid cultures.The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition ofα-glucosidase activity.展开更多
With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily meas...With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study.展开更多
Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse ...Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.展开更多
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole...The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.展开更多
Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly inve...Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.展开更多
Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poo...Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poorly understood,as it involves complex mechanisms that result in the same outcome.Consequently,researchers are interested in studying KOA and require appropriate animal models for basic research.Chinese herbal compounds,which consist of multiple herbs with diverse pharmacological properties,possess characteristics such as multicomponent,multipathway,and multitarget effects.The potential benefits in the treatment of KOA continue to attract attention.Purpose:This study aims to provide a comprehensive overview of the advantages,limitations,and specific considerations in selecting different species and methods for KOA animal models.This will help researchers make informed decisions when choosing an animal model.Methods:Online academic databases(e.g.,PubMed,Google Scholar,Web of Science,and CNKI)were searched using the search terms“knee osteoarthritis,”“animal models,”“traditional Chinese medicine,”and their combinations,primarily including KOA studies published from 2010 to 2023.Results:Based on literature retrieval,this review provides a comprehensive overview of the methods of establishing KOA animal models;introduces the current status of advantages and disadvantages of various animal models,including mice,rats,rabbits,dogs,and sheep/goats;and presents the current status of methods used to establish KOA animal models.Conclusion:This study provides a review of the animal models used in recent KOA research,discusses the common modeling methods,and emphasizes the role of traditional Chinese medicine compounds in the treatment of KOA.展开更多
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e...Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.展开更多
BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are p...BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication.展开更多
El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been develope...El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.展开更多
Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the i...Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.展开更多
文摘This article considers three types of biological systems:the dengue fever disease model,the COVID-19 virus model,and the transmission of Tuberculosis model.The new technique of creating the integration matrix for the Bernoulli wavelets is applied.Also,the novel method proposed in this paper is called the Bernoulli wavelet collocation scheme(BWCM).All three models are in the form system of coupled ordinary differential equations without an exact solution.These systems are converted into a system of algebraic equations using the Bernoulli wavelet collocation scheme.The numerical wave distributions of these governing models are obtained by solving the algebraic equations via the Newton-Raphson method.The results obtained from the developed strategy are compared to several schemes such as the Runge Kutta method,and ND solver in mathematical software.The convergence analyses are discussed through theorems.The newly implemented Bernoulli wavelet method improves the accuracy and converges when it is compared with the existing methods in the literature.
基金supported in part by the NIH grant R01CA241134supported in part by the NSF grant CMMI-1552764+3 种基金supported in part by the NSF grants DMS-1349724 and DMS-2052465supported in part by the NSF grant CCF-1740761supported in part by the U.S.-Norway Fulbright Foundation and the Research Council of Norway R&D Grant 309273supported in part by the Norwegian Centennial Chair grant and the Doctoral Dissertation Fellowship from the University of Minnesota.
文摘The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.
文摘Background: Calotropis procera (C. procera), is an authentic plant naturally grown in the flora of Dead Sea region. Despite its toxicity, C. procera presents healing properties. However, it has not been implemented yet in cosmetics as an active ingredient. Objective: The biological effects of C. procera callus extract on skin were elucidated solely and in combination with Dead Sea water (DSW). Methods: The capability of C. procera extract to protect against skin inflammation and irritation was tested on ex vivo human skin organ culture by LPS and SDS addition respectively. Viability and cytokine secretion were evaluated. The combination of C. procera extract with Dead Sea water was tested on full thickness skin equivalents. Gene expression and relevant biochemical markers for glycolysis, hypoxia and extracellular matrix balance were tested. Results: C. procera extract exhibits a protective biological activity against skin irritation and inflammation at the biochemical level. Furthermore, a combination of C. procera extract and DSW demonstrates a potential contribution for skin wellbeing via enhance energy production, resistance to hypoxia and extracellular matrix balance. Conclusions: Topical application of C. procera callus extract might support skin balance and wellbeing at the molecular level. Hence, it is recommended for new cosmetic formulae as standalone or in combination with Dead Sea water, in the effort to achieve anti-aging bio-activity that is working beyond skin aging symptoms, especially via skin calming effects and skin energy enhancement.
基金We acknowledge funding from NSFC Grant 62306283.
文摘Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.
基金supported by the National Natural Science Foundation of China(Grant Nos.82173620 to Yang Zhao and 82041024 to Feng Chen)partially supported by the Bill&Melinda Gates Foundation(Grant No.INV-006371 to Feng Chen)Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.
基金supported by the National Natural Science Foundation of China(61801506)。
文摘Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of various organs,such as the brain,heart,reproductive organs,and endocrine organs,which endanger human health.Therefore,it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation.The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies.In this article,we review the microwave exposure conditions,subjects used to establish injury models,the methods used for the assessment of the injuries,and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
基金Acknowledgement This paper is supported by National Natural Science Foundation of China (Grant No. 60973092 and No. 60873146), the National High Technology Research and Development Program of China (Grant No.2009 AA02Z307), the "211 Project" of Jilin University, the Key Laboratory for Symbol Computation and Knowledge Engineering (Ministry of Education, China), and the Key Laboratory for New Technology of Biological Recognition of Jilin Province (No. 20082209).
文摘Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fu^zy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory nctworks+ but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without lhctitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast, The results show that this approach can work effectively.
文摘[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing time and plant productivity, biological yield of forage sorghum were simulated and compared by using field experiment and linear regression analysis.[Result] The sowing time had an important influence on the plant productivity and biological yield of forage sorghum in autumn idle land. The plant productivity and biological yield of forage sorghum both decreased with the delay of sowing time.The regression model between plant fresh weight and sowing time was ?fresh=0.618-0.015x; the regression model between plant dry weight and sowing time was ?dry=0.184-0.005x; and the regression model between biological yield and sowing time was yield=29 126.461-711.448x. During July 23rd to August 30th, when the sowing time was delayed by 1 day, the plant fresh weight of forage sorghum was reduced by 0.015 g, the plant dry weight was reduced by 0.005 g, and the yield was reduced by 711.448 kg/hm2. [Conclusion] The three regression models established in this study will provide theoretical support for the production of forage sorghum.
基金supported by grants from the National Natural Science Foundation of China(81471736 and 81671760)the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period(2015BAI01B09)Project of Research Foundation of the Talent of Scientific and Technical Innovation of Harbin City(2016RAXYJ063)
文摘Background: Positron emission tomography(PET) is a noninvasive method to characterize different metabolic activities of tumors, providing information for staging, prognosis, and therapeutic response of patients with cancer. The aim of this study was to evaluate the feasibility of18F-fludeoxyglucose(18F-FDG) and 3’-deoxy-3’-18F-fluorothymidine(18F-FLT) PET in predicting tumor biological characteristics of colorectal cancer liver metastasis.Methods: The uptake rate of18F-FDG and18F-FLT in SW480 and SW620 cells was measured via an in vitro cell uptake assay. The region of interest was drawn over the tumor and liver to calculate the maximum standardized uptake value ratio(tumor/liver) from PET images in liver metastasis model. The correlation between tracer uptake in liver metastases and VEGF, Ki67 and CD44 expression was evaluated by linear regression.Results: Compared to SW620 tumor-bearing mice, SW480 tumor-bearing mice presented a higher rate of liver metastases. The uptake rate of18F-FDG in SW480 and SW620 cells was 6.07% ± 1.19% and2.82% ± 0.15%, respectively(t = 4.69, P = 0.04); that of18F-FLT was 24.81% ± 0.45% and 15.57% ± 0.66%, respectively(t = 19.99, P < 0.001). Micro-PET scan showed that all parameters of FLT were significantly higher in SW480 tumors than those in SW620 tumors. A moderate relationship was detected between metastases in the liver and18F-FLT uptake in primary tumors(r = 0.73, P = 0.0019).18F-FLT uptake was also positively correlated with the expression of CD44 in liver metastases(r = 0.81, P = 0.0049).Conclusions: The uptake of18F-FLT in metastatic tumor reflects different biological behaviors of colon cancer cells.18F-FLT can be used to evaluate the metastatic potential of colorectal cancer in nude mice.
文摘The inflection point is an important feature of sigmoidal height-diameter(H-D)models.It is often cited as one of the properties favoring sigmoidal model forms.However,there are very few studies analyzing the inflection points of H-D models.The goals of this study were to theoretically and empirically examine the behaviors of inflection points of six common H-D models with a regional dataset.The six models were the Wykoff(WYK),Schumacher(SCH),Curtis(CUR),HossfeldⅣ(HOS),von Bertalanffy-Richards(VBR),and Gompertz(GPZ)models.The models were first fitted in their base forms with tree species as random effects and were then expanded to include functional traits and spatial distribution.The distributions of the estimated inflection points were similar between the two-parameter models WYK,SCH,and CUR,but were different between the threeparameter models HOS,VBR,and GPZ.GPZ produced some of the largest inflection points.HOS and VBR produced concave H-D curves without inflection points for 12.7%and 39.7%of the tree species.Evergreen species or decreasing shade tolerance resulted in larger inflection points.The trends in the estimated inflection points of HOS and VBR were entirely opposite across the landscape.Furthermore,HOS could produce concave H-D curves for portions of the landscape.Based on the studied behaviors,the choice between two-parameter models may not matter.We recommend comparing seve ral three-parameter model forms for consistency in estimated inflection points before deciding on one.Believing sigmoidal models to have inflection points does not necessarily mean that they will produce fitted curves with one.Our study highlights the need to integrate analysis of inflection points into modeling H-D relationships.
文摘Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders,and it is a rapidly growing global public health issue.It is characterized by hyperglycemia,a condition involving a high blood glucose level brought on by deficiencies in insulin secretion,decreased activity of insulin,or both.Prolonged effects of diabetes include cardiovascular problems,retinopathy,neuropathy,nephropathy,and vascular alterations in both macro-and micro-blood vessels.In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis,identifying targets,and reviewing novel treatment options and medications.Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences.The most popular in vivo studies involves the small animal models,such as rodent models,chemically induced diabetogens like streptozotocin and alloxan,and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals.Other models include virally induced models,diet/nutrition induced diabetic animals,surgically induced models or pancreatectomy models,and non-obese models.Large animals or non-rodent models like porcine(pig),canine(dog),nonhuman primate,and Zebrafish models are also outlined.The in vitro models discussed are murine and human beta-cell lines and pancreatic islets,human stem cells,and organoid cultures.The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition ofα-glucosidase activity.
文摘With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study.
文摘Parkinson’s disease is chara cterized by the loss of dopaminergic neurons in the substantia nigra pars com pacta,and although restoring striatal dopamine levels may improve symptoms,no treatment can cure or reve rse the disease itself.Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson’s disease.Mesenchymal stem cells are considered a promising option due to fewer ethical concerns,a lower risk of immune rejection,and a lower risk of teratogenicity.We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function,memory,and preservation of dopamine rgic neurons in a Parkinson’s disease animal model.We searched bibliographic databases(PubMed/MEDLINE,Embase,CENTRAL,Scopus,and Web of Science)to identify articles and included only pee r-reviewed in vivo interve ntional animal studies published in any language through J une 28,2023.The study utilized the random-effect model to estimate the 95%confidence intervals(CI)of the standard mean differences(SMD)between the treatment and control groups.We use the systematic review center for laboratory animal expe rimentation’s risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment.A total of 33studies with data from 840 Parkinson’s disease model animals were included in the meta-analysis.Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test.Among the stem cell types,the bone marrow MSCs with neurotrophic factor group showed la rgest effect size(SMD[95%CI]=-6.21[-9.50 to-2.93],P=0.0001,I^(2)=0.0%).The stem cell treatment group had significantly more tyrosine hydroxylase positive dopamine rgic neurons in the striatum([95%CI]=1.04[0.59 to 1.49],P=0.0001,I^(2)=65.1%)and substantia nigra(SMD[95%CI]=1.38[0.89 to 1.87],P=0.0001,I^(2)=75.3%),indicating a protective effect on dopaminergic neurons.Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route(SMD[95%CI]=-2.59[-3.25 to-1.94],P=0.0001,I^(2)=74.4%).The memory test showed significant improvement only in the intravenous route(SMD[95%CI]=4.80[1.84 to 7.76],P=0.027,I^(2)=79.6%).Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson’s disease.Further research is required to determine the optimal stem cell types,modifications,transplanted cell numbe rs,and delivery methods for these protocols.
基金National Key Research and Development Program of China(2022YFC2303700,2021YFC2301300)Yunnan Key Research and Development Program(202303AC100026)+2 种基金National Natural Science Foundation of China(82302002,82341069)Yunnan Fundamental Research Project(202201AS070047)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0490000)。
文摘The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019(COVID-19)immunobiology,often resulting in a lack of reproducibility when extrapolated to the whole organism.Consequently,developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.This review summarizes current progress related to COVID-19 animal models,including non-human primates(NHPs),mice,and hamsters,with a focus on their roles in exploring the mechanisms of immunopathology,immune protection,and long-term effects of SARS-CoV-2 infection,as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection.Differences among these animal models and their specific applications are also highlighted,as no single model can fully encapsulate all aspects of COVID-19.To effectively address the challenges posed by COVID-19,it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities.Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic,serving as a robust resource for future emerging infectious diseases.
基金supported by the National Key Research and Development Program of China (2021YFA0805300,2021YFA0805200)National Natural Science Foundation of China (32170981,82371874,82394422,82171244,82071421,82271902)+1 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001)。
文摘Huntington'sdisease(HD)isahereditary neurodegenerative disorder for which there is currently no effectivetreatmentavailable.Consequently,the development of appropriate disease models is critical to thoroughly investigate disease progression.The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin(HTT)gene,leading to the expansion of a polyglutamine repeat in the HTT protein.Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain,which precipitate selective neuronal loss in specific brain regions.Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets.Due to the marked species differences between rodents and larger animals,substantial efforts have been directed toward establishing large animal models for HD research.These models are pivotal for advancing the discovery of novel therapeutic targets,enhancing effective drug delivery methods,and improving treatment outcomes.We have explored the advantages of utilizing large animal models,particularly pigs,in previous reviews.Since then,however,significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD.In the current review,we provide a comprehensive overview of large animal models of HD,incorporating recent findings regarding the establishment of HD knock-in(KI)pigs and their genetic therapy.We also explore the utilization of large animal models in HD research,with a focus on sheep,non-human primates(NHPs),and pigs.Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.
基金supported by the Cutting Edge Development Fund of Advanced Medical Research Institute(GYY2023QY01)the China Postdoctoral Science Foundation(certificate number:2023M732093)。
文摘Background:Knee osteoarthritis(KOA)characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults.The pathophysiology of KOA remains poorly understood,as it involves complex mechanisms that result in the same outcome.Consequently,researchers are interested in studying KOA and require appropriate animal models for basic research.Chinese herbal compounds,which consist of multiple herbs with diverse pharmacological properties,possess characteristics such as multicomponent,multipathway,and multitarget effects.The potential benefits in the treatment of KOA continue to attract attention.Purpose:This study aims to provide a comprehensive overview of the advantages,limitations,and specific considerations in selecting different species and methods for KOA animal models.This will help researchers make informed decisions when choosing an animal model.Methods:Online academic databases(e.g.,PubMed,Google Scholar,Web of Science,and CNKI)were searched using the search terms“knee osteoarthritis,”“animal models,”“traditional Chinese medicine,”and their combinations,primarily including KOA studies published from 2010 to 2023.Results:Based on literature retrieval,this review provides a comprehensive overview of the methods of establishing KOA animal models;introduces the current status of advantages and disadvantages of various animal models,including mice,rats,rabbits,dogs,and sheep/goats;and presents the current status of methods used to establish KOA animal models.Conclusion:This study provides a review of the animal models used in recent KOA research,discusses the common modeling methods,and emphasizes the role of traditional Chinese medicine compounds in the treatment of KOA.
基金supported by the National Key Research and Development Program of China (2021YFA0805902,2022YFF0710703)National Natural Science Foundation of China (32201257)+1 种基金Science and Technology Innovation Project of Xiongan New Area (2022XAGG0121)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)。
文摘Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.
文摘BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication.
基金supported by the National Natural Science Foundation of China(NFSCGrant No.42030410)+2 种基金Laoshan Laboratory(No.LSKJ202202402)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Startup Foundation for Introducing Talent of NUIST.
文摘El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.
基金supported by the National Natural Science Foundation of China,No.81772421(to YH).
文摘Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.