Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ...Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.展开更多
Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aimin...Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aiming at the limited morphological information of synthetic aperture radar(SAR)images,which is greatly interfered by noise,and the susceptibility of optical images to weather and lighting conditions,this paper proposes a pixel-level weighted fusion method for SAR and optical images.Image fusion enhanced the target features and made mangrove monitoring more comprehensive and accurate.To address the problem of high similarity between mangrove forests and other forests,this paper is based on the U-Net convolutional neural network,and an attention mechanism is added in the feature extraction stage to make the model pay more attention to the mangrove vegetation area in the image.In order to accelerate the convergence and normalize the input,batch normalization(BN)layer and Dropout layer are added after each convolutional layer.Since mangroves are a minority class in the image,an improved cross-entropy loss function is introduced in this paper to improve the model’s ability to recognize mangroves.The AttU-Net model for mangrove recognition in high similarity environments is thus constructed based on the fused images.Through comparison experiments,the overall accuracy of the improved U-Net model trained from the fused images to recognize the predicted regions is significantly improved.Based on the fused images,the recognition results of the AttU-Net model proposed in this paper are compared with its benchmark model,U-Net,and the Dense-Net,Res-Net,and Seg-Net methods.The AttU-Net model captured mangroves’complex structures and textural features in images more effectively.The average OA,F1-score,and Kappa coefficient in the four tested regions were 94.406%,90.006%,and 84.045%,which were significantly higher than several other methods.This method can provide some technical support for the monitoring and protection of mangrove ecosystems.展开更多
To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected...To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.展开更多
In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary ...In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.展开更多
In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds ...In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds of setups which are able to transform non-visible into visible light imaging,wherein their computing process is replaced by a camera integration mode.The image captured by the camera has a low contrast,so here we present an algorithm that can realize a high quality image in near-infrared to visible cross-waveband imaging.The scheme is verified both by simulation and in actual experiments.The setups demonstrate the great potential for single-pixel imaging and high-speed cross-waveband imaging for future practical applications.展开更多
Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unc...Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.展开更多
Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible...Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.展开更多
Vascular segmentation is a crucial task in biomedical image processing,which is significant for analyzing and modeling vascular networks under physiological and pathological states.With advances in fluorescent labelin...Vascular segmentation is a crucial task in biomedical image processing,which is significant for analyzing and modeling vascular networks under physiological and pathological states.With advances in fluorescent labeling and mesoscopic optical techniques,it has become possible to map the whole-mouse-brain vascular networks at capillary resolution.However,segmenting vessels from mesoscopic optical images is a challenging task.The problems,such as vascular signal discontinuities,vessel lumens,and background fluorescence signals in mesoscopic optical images,belong to global semantic information during vascular segmentation.Traditional vascular segmentation methods based on convolutional neural networks(CNNs)have been limited by their insufficient receptive fields,making it challenging to capture global semantic information of vessels and resulting in inaccurate segmentation results.Here,we propose SegVesseler,a vascular segmentation method based on Swin Transformer.SegVesseler adopts 3D Swin Transformer blocks to extract global contextual information in 3D images.This approach is able to maintain the connectivity and topology of blood vessels during segmentation.We evaluated the performance of our method on mouse cerebrovascular datasets generated from three different labeling and imaging modalities.The experimental results demonstrate that the segmentation effect of our method is significantly better than traditional CNNs and achieves state-of-the-art performance.展开更多
Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak corre...Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak correlation with plaintext images, poor image reconstruction quality, and low efficiency in transmission and storage. To solve these issues,this paper proposes an optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system(4D MHS) and compressed sensing(CS). Firstly, this paper proposes a new 4D MHS, which has larger key space, richer dynamic behavior, and more complex hyperchaotic characteristics. The introduction of CS can reduce the image size and the transmission burden of hardware devices. The introduction of double random phase encoding(DRPE) enables this algorithm has the ability of parallel data processing and multi-dimensional coding space, and the hyperchaotic characteristics of 4D MHS make up for the nonlinear deficiency of DRPE. Secondly, a construction method of the deterministic chaotic measurement matrix(DCMM) is proposed. Using DCMM can not only save a lot of transmission bandwidth and storage space, but also ensure good quality of reconstructed images. Thirdly, the confusion method and diffusion method proposed are related to plaintext images, which require both four hyperchaotic sequences of 4D MHS and row and column keys based on plaintext images. The generation process of hyperchaotic sequences is closely related to the hash value of plaintext images. Therefore, this algorithm has high sensitivity to plaintext images. The experimental testing and comparative analysis results show that proposed algorithm has good security and effectiveness.展开更多
Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a...Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.展开更多
To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model...To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.展开更多
Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effe...Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve she...Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve sheath.Methods This retrospective study included patients with thyroid-associated ophthalmopathy(TAO)without DON and patients with TAO accompanied by DON at our hospital.The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and,together with clinical factors,were screened by Least absolute shrinkage and selection operator.Subsequently,we constructed a prediction model using multivariate logistic regression.The accuracy of the model was verified using receiver operating characteristic curve analysis.Results In total,80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study.Two variables(optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath)were found to be independent predictive factors and were included in the prediction model.In the development cohort,the mean area under the curve(AUC)was 0.994,with a sensitivity of 0.944,specificity of 0.967,and accuracy of 0.901.Moreover,in the validation cohort,the AUC was 0.960,the sensitivity was 0.889,the specificity was 0.893,and the accuracy was 0.890.Conclusions A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath,serving as a noninvasive potential tool to predict DON.展开更多
Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater ta...Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.展开更多
The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning l...The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning laser ophthalmoscope(AOSLO)provides an excellent tool to acquire accurate and detailed information about the parafoveal area with cellular resolution.However,limited by the scanning speed of two-dimensional scanning,thefield of view(FOV)in the AOSLO system was usually less than or equal to 2,and the stitching for the parafoveal area required dozens of images,which was time-consuming and laborious.Unfortunately,almost half of patients are unable to obtain stitched images because of their poorfixation.To solve this problem,we integrate AO technology with the line-scan imaging method to build an adaptive optics line scanning ophthalmoscope(AOLSO)system with a larger FOV.In the AOLSO,afocal spherical mirrors in pairs are nonplanar arranged and the distance and angle between optical elements are optimized to minimize the aberrations,two cylinder lenses are orthogonally placed before the imaging sensor to stretch the point spread function(PSF)for sufficiently digitizing light energy.Captured human retinal images show the whole parafoveal area with 55FOV,60 Hz frame rate and cellular resolutions.Take advantage of the 5FOV of the AOLSO,only 9 frames of the retina are captured with several minutes to stitch a montage image with an FOV of 99,in which photoreceptor counting is performed within approximately 5eccentricity.The AOLSO system not only provides cellular resolution but also has the capability to capture the parafoveal region in a single frame,which offers great potential for noninvasive studying of the parafoveal area.展开更多
Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre...Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.展开更多
Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,...Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.展开更多
基金supported by the National Natural Science Foundation of China(62375144 and 61875092)Tianjin Foundation of Natural Science(21JCYBJC00260)Beijing-Tianjin-Hebei Basic Research Cooperation Special Program(19JCZDJC65300).
文摘Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.
基金The Key R&D Project of Hainan Province under contract No.ZDYF2023SHFZ097the National Natural Science Foundation of China under contract No.42376180。
文摘Mangroves are indispensable to coastlines,maintaining biodiversity,and mitigating climate change.Therefore,improving the accuracy of mangrove information identification is crucial for their ecological protection.Aiming at the limited morphological information of synthetic aperture radar(SAR)images,which is greatly interfered by noise,and the susceptibility of optical images to weather and lighting conditions,this paper proposes a pixel-level weighted fusion method for SAR and optical images.Image fusion enhanced the target features and made mangrove monitoring more comprehensive and accurate.To address the problem of high similarity between mangrove forests and other forests,this paper is based on the U-Net convolutional neural network,and an attention mechanism is added in the feature extraction stage to make the model pay more attention to the mangrove vegetation area in the image.In order to accelerate the convergence and normalize the input,batch normalization(BN)layer and Dropout layer are added after each convolutional layer.Since mangroves are a minority class in the image,an improved cross-entropy loss function is introduced in this paper to improve the model’s ability to recognize mangroves.The AttU-Net model for mangrove recognition in high similarity environments is thus constructed based on the fused images.Through comparison experiments,the overall accuracy of the improved U-Net model trained from the fused images to recognize the predicted regions is significantly improved.Based on the fused images,the recognition results of the AttU-Net model proposed in this paper are compared with its benchmark model,U-Net,and the Dense-Net,Res-Net,and Seg-Net methods.The AttU-Net model captured mangroves’complex structures and textural features in images more effectively.The average OA,F1-score,and Kappa coefficient in the four tested regions were 94.406%,90.006%,and 84.045%,which were significantly higher than several other methods.This method can provide some technical support for the monitoring and protection of mangrove ecosystems.
文摘To verify the effectiveness of digital optical 3D image analyzer EvaSKIN in the objective and quantitative evaluation of wrinkles.A total of 115 subjects were recruited,the facial images of the subjects were collected by digital optical 3D image analyzer and manual camera,the changes of crow’s feet with age were analyzed.Pictures obtained by manual photography can be directly used for observation and preliminary grading of wrinkles.However,the requirements for evaluators are high,and the results are prone to errors,which will affect the accuracy of the evaluation.Therefore,skilled raters are needed.Compared with the manual photography method,the digital optical 3D image analyzer EvaSKIN can realize three-dimensional extraction of wrinkles,and obtain the change trend of crow’s feet with age.20~30 years old,wrinkles begin to appear slowly;wrinkles will increase rapidly at the age of 30~50;The length of 50~60 year old wrinkles is basically fixed,the wrinkles develop longitudewise,gradually widen and deepen,and the area,depth and volume increase is obvious,and the skin aging condition is intensified.the digital optical 3D image analyzer EvaSKIN realizes the 3D extraction of wrinkles,quantifies the circumference,area,average depth,maximum depth and volume of wrinkles,realizes the objective and quantitative evaluation of wrinkle state,is more accurate in the measurement of wrinkles,and provides a new instrument and method for the evaluation of wrinkles.it is a perfect and supplement to the traditional evaluation methods,and to a certain extent,it helps the research and development and evaluation institutions of cosmetics to obtain more abundant and three-dimensional data support.
基金funding from the National Natural Science Foundation of China(NSFC)under grants 61627827,61705068the Natural Science Foundation of Fujian Province 2021J01813the Fujian Medical University Research Foundation of Talented Scholars XRCZX2021004.
文摘In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.
文摘In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds of setups which are able to transform non-visible into visible light imaging,wherein their computing process is replaced by a camera integration mode.The image captured by the camera has a low contrast,so here we present an algorithm that can realize a high quality image in near-infrared to visible cross-waveband imaging.The scheme is verified both by simulation and in actual experiments.The setups demonstrate the great potential for single-pixel imaging and high-speed cross-waveband imaging for future practical applications.
基金National Natural Science Foundation of China (Nos.61871353 and 42006164)for their support。
文摘Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.
基金support from the National Key Research and Development Program of China(Grant No.2017YFA0700501),and the Innovation Fund of WNLO.
文摘Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.
基金supported by the STI2030-Major Projects (2021ZD0201002)the National Natural Science Foundation of China (82102137,T2122015)+2 种基金Natural Science Foundation of Shaanxi Provincial Department of Education (21JK0796)the Open Project Program of Wuhan National Laboratory for Optoelectronics (2021WNL OKF006)the Natural Science Foundation of Sichuan Province (2022NSFSC0964).
文摘Vascular segmentation is a crucial task in biomedical image processing,which is significant for analyzing and modeling vascular networks under physiological and pathological states.With advances in fluorescent labeling and mesoscopic optical techniques,it has become possible to map the whole-mouse-brain vascular networks at capillary resolution.However,segmenting vessels from mesoscopic optical images is a challenging task.The problems,such as vascular signal discontinuities,vessel lumens,and background fluorescence signals in mesoscopic optical images,belong to global semantic information during vascular segmentation.Traditional vascular segmentation methods based on convolutional neural networks(CNNs)have been limited by their insufficient receptive fields,making it challenging to capture global semantic information of vessels and resulting in inaccurate segmentation results.Here,we propose SegVesseler,a vascular segmentation method based on Swin Transformer.SegVesseler adopts 3D Swin Transformer blocks to extract global contextual information in 3D images.This approach is able to maintain the connectivity and topology of blood vessels during segmentation.We evaluated the performance of our method on mouse cerebrovascular datasets generated from three different labeling and imaging modalities.The experimental results demonstrate that the segmentation effect of our method is significantly better than traditional CNNs and achieves state-of-the-art performance.
文摘Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak correlation with plaintext images, poor image reconstruction quality, and low efficiency in transmission and storage. To solve these issues,this paper proposes an optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system(4D MHS) and compressed sensing(CS). Firstly, this paper proposes a new 4D MHS, which has larger key space, richer dynamic behavior, and more complex hyperchaotic characteristics. The introduction of CS can reduce the image size and the transmission burden of hardware devices. The introduction of double random phase encoding(DRPE) enables this algorithm has the ability of parallel data processing and multi-dimensional coding space, and the hyperchaotic characteristics of 4D MHS make up for the nonlinear deficiency of DRPE. Secondly, a construction method of the deterministic chaotic measurement matrix(DCMM) is proposed. Using DCMM can not only save a lot of transmission bandwidth and storage space, but also ensure good quality of reconstructed images. Thirdly, the confusion method and diffusion method proposed are related to plaintext images, which require both four hyperchaotic sequences of 4D MHS and row and column keys based on plaintext images. The generation process of hyperchaotic sequences is closely related to the hash value of plaintext images. Therefore, this algorithm has high sensitivity to plaintext images. The experimental testing and comparative analysis results show that proposed algorithm has good security and effectiveness.
基金the National Natural Science Foundation of China(Grant Nos.51874264 and 52076200)。
文摘Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.
基金Funding for this research was provided by 511 Shaanxi Province’s Key Research and Development Plan(No.2022NY-087).
文摘To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.
基金supported by science and technology projects of Gansu State Grid Corporation of China(52272220002U).
文摘Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported financially by grants from the National Natural Science Foundation of China(No.81771793).
文摘Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve sheath.Methods This retrospective study included patients with thyroid-associated ophthalmopathy(TAO)without DON and patients with TAO accompanied by DON at our hospital.The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and,together with clinical factors,were screened by Least absolute shrinkage and selection operator.Subsequently,we constructed a prediction model using multivariate logistic regression.The accuracy of the model was verified using receiver operating characteristic curve analysis.Results In total,80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study.Two variables(optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath)were found to be independent predictive factors and were included in the prediction model.In the development cohort,the mean area under the curve(AUC)was 0.994,with a sensitivity of 0.944,specificity of 0.967,and accuracy of 0.901.Moreover,in the validation cohort,the AUC was 0.960,the sensitivity was 0.889,the specificity was 0.893,and the accuracy was 0.890.Conclusions A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath,serving as a noninvasive potential tool to predict DON.
基金supported by the National Natural Science Foundation of China (No.52394252)the Postdoctoral Fellowship Program of CPSF (No.GZC20232497)+2 种基金the Key Research and Development Program of Shandong Province,China (No.2021ZLGX04)the Shandong Postdoctoral Science Foundation (No.SDBX2023012)the Qingdao Postdoctoral Program Grant (No.QDBSH20230202009)。
文摘Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.
基金supported by the National Natural Science Foundation of China under Grant No.62075235,National Key R&D Program of China under Grant No.2021YFF0700700Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City under Grant No.ZXL2021425+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No.2019320Innovation of Scientific Research Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA15021304.
文摘The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning laser ophthalmoscope(AOSLO)provides an excellent tool to acquire accurate and detailed information about the parafoveal area with cellular resolution.However,limited by the scanning speed of two-dimensional scanning,thefield of view(FOV)in the AOSLO system was usually less than or equal to 2,and the stitching for the parafoveal area required dozens of images,which was time-consuming and laborious.Unfortunately,almost half of patients are unable to obtain stitched images because of their poorfixation.To solve this problem,we integrate AO technology with the line-scan imaging method to build an adaptive optics line scanning ophthalmoscope(AOLSO)system with a larger FOV.In the AOLSO,afocal spherical mirrors in pairs are nonplanar arranged and the distance and angle between optical elements are optimized to minimize the aberrations,two cylinder lenses are orthogonally placed before the imaging sensor to stretch the point spread function(PSF)for sufficiently digitizing light energy.Captured human retinal images show the whole parafoveal area with 55FOV,60 Hz frame rate and cellular resolutions.Take advantage of the 5FOV of the AOLSO,only 9 frames of the retina are captured with several minutes to stitch a montage image with an FOV of 99,in which photoreceptor counting is performed within approximately 5eccentricity.The AOLSO system not only provides cellular resolution but also has the capability to capture the parafoveal region in a single frame,which offers great potential for noninvasive studying of the parafoveal area.
基金support from the National Research Foundation (NRF) Singapore, under its Competitive Research Programme Award NRF-CRP20-20170004 and NRF Investigatorship Award NRF-NRFI06-20200005MTC Programmatic Grant M21J9b0085, as well as the Lite-On Project RS-INDUS-00090+5 种基金support from Australian Research Council (DE220101085, DP220102152)grants from German Research Foundation (SCHM2655/15-1, SCHM2655/21-1)Lee-Lucas Chair in Physics and funding by the Australian Research Council DP220102152financial support from the National Natural Science Foundation of China (Grant No. 62275078)Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ20020)Shenzhen Science and Technology Program (Grant No. JCYJ20220530160405013)
文摘Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.62175156,81827807,81770940)Science and Technology Commission of Shanghai Municipality(22S31903000,16DZ0501100)Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27).
文摘Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.