Paleoenvironmental reconstruction is fundamental to understand the modern environmental changes and to predict future environment, which is especially critical to understand the evolution of land and sea during geolog...Paleoenvironmental reconstruction is fundamental to understand the modern environmental changes and to predict future environment, which is especially critical to understand the evolution of land and sea during geological periods. However, the basic geological research on China's muddy coastal zone is not enough to provide quantitative data to compare with global changes. Therefore, in 2011, China Geological Survey deployed the "Late Quaternary geo-environmental evolution and modern process of China" project, and focused on the muddy coastal zones of the Liaodong Bay, Bohai Bay, the Yellow River Delta, Yangtze River Delta and Pearl River Delta (Fig. 1). Next we will briefly introduce our latest results in the Bohai Bay.展开更多
The first International Conference on Modern Process Mineralogy and Mineral Processing, organized by the Nonferrous Metals Society of China and hosted by Beijing General Research Institute of Mining and Metallurgy,was...The first International Conference on Modern Process Mineralogy and Mineral Processing, organized by the Nonferrous Metals Society of China and hosted by Beijing General Research Institute of Mining and Metallurgy,was held on September 22-25,1992,in Beijing,China.About 350 scholars and experts from 25 countries and regions showed up at the conference and 130 papers were presented,among them 98 papers are of mineral processing.Some of the papers given in mineral processing are summed up as follows.展开更多
As ancien capitals, Beijing, Seoul and Tokyo share many commoncharacteristics, but Beijing and Seoul lagged much behind Tokyo from wid19th century to mid-20th century in terms of development level. During thepast fou...As ancien capitals, Beijing, Seoul and Tokyo share many commoncharacteristics, but Beijing and Seoul lagged much behind Tokyo from wid19th century to mid-20th century in terms of development level. During thepast four decades Seoul and Beijing have devoted every theft to aeceleratetheir modernization process. This paper intends to make a brief review and tosummerize some similarities of the basic feaures in respects ofindustrialization and urbanization.展开更多
Studying the climatic and environmental changes on different time scales in inland arid regions of Asia can greatly im‐prove our understanding of climatic influences for the Qinghai-Tibet Plateau in the context of gl...Studying the climatic and environmental changes on different time scales in inland arid regions of Asia can greatly im‐prove our understanding of climatic influences for the Qinghai-Tibet Plateau in the context of global change. Pollen, as a remnant of seed plants, is sensitive to environmental factors including precipitation, temperature and altitude, and is a clas‐sic proxy in environmental reconstruction. In the last two decades, great progress in the application of palynology to in‐land areas of Asia has highlighted the role of palynology in paleoclimatic and paleoenvironmental research. The main progress is as follows. (1) On the tectonic time scale of the late Cenozoic, the palaeoclimatological sequence has been es‐tablished on the basis of pollen percentage, concentration and taxon. Pollen data have revealed a continuous enhancement of drought in the inland arid region of Asia, in contrast to evidence acquired based on other proxies. (2) In the late Quater‐nary, an increase in herbaceous plants further supports the intensification of drought associated with global cooling. In more detail, the palynological record shows a glacial-interglacial pattern consistent with changes in global ice volume. (3) The Holocene pollen record has been established at a high resolution and across a wide range of inland areas. In general, it presents an arid grassland environment in the early Holocene, followed by the development of woody plants in the mid- to late-Holocene climate optimum. This pattern is related to moisture changes in areas dominated by the westerlies. There are also significant regional differences in the pattern and amplitude of vegetation response to the Holocene environment. (4) Modern pollen studies based on vegetation surveys, meteorological data and statistics show that topsoil palynology can better reflect regional vegetation types (e. g., grassland, meadow, desert). Drier climates yield higher pollen contents of drought-tolerant plants such as Chenopodioideae, Ephedra, and Nitriaria, while contents of Artemisia and Poaceae are greater under humid climates. Besides these achievements, problems remain in palynological research: for example, pol‐len extraction, identification, interpretation, and quantitative reconstruction. In the future, we encourage strengthened inter‐disciplinary cooperation to improve experimental methods and innovation. Firstly, we should strengthen palynological classification and improve the skill of identification;secondly, laboratory experiments are needed to better constrain pol‐len transport dynamics in water and air;thirdly, more rigorous mathematical principles will improve the reliability of re‐constructions and deepen the knowledge of plant geography;and finally, new areas and methods in palynology should be explored, for example DNA, UV-B and isotopic analysis. It is expected that palynology will continue to develop, and we hope it will continue to play an important role in the study of past climatic and environmental changes.展开更多
基金funded by China Geological Survey(Grants No.1212011120169 and 12120113005800)the National Natural Science Foundation of China(Grants No.41206069,41476074 and 41372173)
文摘Paleoenvironmental reconstruction is fundamental to understand the modern environmental changes and to predict future environment, which is especially critical to understand the evolution of land and sea during geological periods. However, the basic geological research on China's muddy coastal zone is not enough to provide quantitative data to compare with global changes. Therefore, in 2011, China Geological Survey deployed the "Late Quaternary geo-environmental evolution and modern process of China" project, and focused on the muddy coastal zones of the Liaodong Bay, Bohai Bay, the Yellow River Delta, Yangtze River Delta and Pearl River Delta (Fig. 1). Next we will briefly introduce our latest results in the Bohai Bay.
文摘The first International Conference on Modern Process Mineralogy and Mineral Processing, organized by the Nonferrous Metals Society of China and hosted by Beijing General Research Institute of Mining and Metallurgy,was held on September 22-25,1992,in Beijing,China.About 350 scholars and experts from 25 countries and regions showed up at the conference and 130 papers were presented,among them 98 papers are of mineral processing.Some of the papers given in mineral processing are summed up as follows.
文摘As ancien capitals, Beijing, Seoul and Tokyo share many commoncharacteristics, but Beijing and Seoul lagged much behind Tokyo from wid19th century to mid-20th century in terms of development level. During thepast four decades Seoul and Beijing have devoted every theft to aeceleratetheir modernization process. This paper intends to make a brief review and tosummerize some similarities of the basic feaures in respects ofindustrialization and urbanization.
基金the NSFC(41772181,41807440 and 41888101)the Strategic Priority Research Program of CAS(No.XDA20070200)+4 种基金Young Top Talents Project of the"Ten Thousand Youth Program"of the Organization Department of the Central Committee of the CPCYouth Innovation Promotion Association,CAS(2014383)"Light of West China"Program,CASand the NSF of Gansu Province(18JR3RA395)We thank Miao's group members and anonymous referees for discussions and their constructive suggestions。
文摘Studying the climatic and environmental changes on different time scales in inland arid regions of Asia can greatly im‐prove our understanding of climatic influences for the Qinghai-Tibet Plateau in the context of global change. Pollen, as a remnant of seed plants, is sensitive to environmental factors including precipitation, temperature and altitude, and is a clas‐sic proxy in environmental reconstruction. In the last two decades, great progress in the application of palynology to in‐land areas of Asia has highlighted the role of palynology in paleoclimatic and paleoenvironmental research. The main progress is as follows. (1) On the tectonic time scale of the late Cenozoic, the palaeoclimatological sequence has been es‐tablished on the basis of pollen percentage, concentration and taxon. Pollen data have revealed a continuous enhancement of drought in the inland arid region of Asia, in contrast to evidence acquired based on other proxies. (2) In the late Quater‐nary, an increase in herbaceous plants further supports the intensification of drought associated with global cooling. In more detail, the palynological record shows a glacial-interglacial pattern consistent with changes in global ice volume. (3) The Holocene pollen record has been established at a high resolution and across a wide range of inland areas. In general, it presents an arid grassland environment in the early Holocene, followed by the development of woody plants in the mid- to late-Holocene climate optimum. This pattern is related to moisture changes in areas dominated by the westerlies. There are also significant regional differences in the pattern and amplitude of vegetation response to the Holocene environment. (4) Modern pollen studies based on vegetation surveys, meteorological data and statistics show that topsoil palynology can better reflect regional vegetation types (e. g., grassland, meadow, desert). Drier climates yield higher pollen contents of drought-tolerant plants such as Chenopodioideae, Ephedra, and Nitriaria, while contents of Artemisia and Poaceae are greater under humid climates. Besides these achievements, problems remain in palynological research: for example, pol‐len extraction, identification, interpretation, and quantitative reconstruction. In the future, we encourage strengthened inter‐disciplinary cooperation to improve experimental methods and innovation. Firstly, we should strengthen palynological classification and improve the skill of identification;secondly, laboratory experiments are needed to better constrain pol‐len transport dynamics in water and air;thirdly, more rigorous mathematical principles will improve the reliability of re‐constructions and deepen the knowledge of plant geography;and finally, new areas and methods in palynology should be explored, for example DNA, UV-B and isotopic analysis. It is expected that palynology will continue to develop, and we hope it will continue to play an important role in the study of past climatic and environmental changes.