In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based o...In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based on equipment operating status, utility theory and fuzzy theory. In this model, the proper membership function is adopted to describe the influence of lightning, wind speed, line ice and temperature, and the outage rate of overhead line, derived from historical statistics, is amended. Based on this model, the power supply risk analysis software is developed to calculate the online risk indicators of district grid, and provide real-time decision support information based on risk theory for scheduling operations personnel.展开更多
A general failure probability simulation and deviation evaluation methods were presented for fuzzy safety state and fuzzy failure state. And the corresponding number integral method was simultaneously established. As ...A general failure probability simulation and deviation evaluation methods were presented for fuzzy safety state and fuzzy failure state. And the corresponding number integral method was simultaneously established. As the distribution of state variable and the membership of the state variable to the fuzzy safety set were normal, the general failure probability of the single failure mode had precise analytic solution, which was used to verify the precision of the presented methods. The results show that the evaluation of the simulation method convergences to the analytic solution with the number increase of the sampling. The above methods for the single failure mode was extended to the multi-mode by the expansion and probability principles. The presented methods were applied to the engineering problem. For the number of significant mode is not too many, the high precision solution can be given by the presented number simulation and number integral methods, which is illustrated by the engineering examples. In addition, the application scope of the methods was discussed.展开更多
The parameters of principal and directional extrema in a marine environment are important in marine engineering design, especially for appropriate construction of oceanic platforms and other structures. When designing...The parameters of principal and directional extrema in a marine environment are important in marine engineering design, especially for appropriate construction of oceanic platforms and other structures. When designing wave walls and break water structures, the orientation of the breakwater or seawall depends mainly on the direction of the strongest waves. However, the strength of the breakwater and the elevation of the seawall depend on the magnitude of the biggest wave height of the strongest waves. Thus, identification of directional extrema plays an important role in the design of wave factors. When calculating the directional extremum, different materials may require different specific computational methods, yet few theoretical studies have been conducted in this field of research. Based on multivariate extremnm statistical theory, this paper utilizes a discrete random variable to build a joint probability model compounded by a discrete random variable and a multivariate continuous random variable. Furthermore, this paper provides the first investigation on the theories and methodologies to deduce wave directional extrema. The results provide tools for both creating the calculation method of the directional extremum value and providing the rational directional extremum parameters for marine engineering design.展开更多
Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mo...Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.展开更多
In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achieve...In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achievements, controller design of MJLSs pays more attention to state/output feedback control for stability, while the system cost in practice is out of consideration. In this paper, we propose a control mechanism consisting of two parts: finite-path-dependent state feedback controller design with which uniform stability of MJLSs can be ensured, and mode feedback control which aims to decrease system cost. Differing from the traditional state/output feedback controller design, the main novelty is that the proposed control mechanism not only guarantees system stability, but also decreases system cost effectively by adjusting the occurrence probability of system modes. The effectiveness of the proposed mechanism is illustrated via numerical examples.展开更多
The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the las...The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the laser field isobtained.The mean,normalized variance and skewness of the steady-state laser intensity are calculated.It is found thatthe time-delayed feedback control can suppress the intensity fluctuation of the laser system.The numerical simulationsare in good agreement with the approximate analytic results.展开更多
We investigate the possibility for two-mode probability density function (PDF) to have a non-zero flux steady state solution. We take the large volume limit so that the space of modes becomes continuous. It is shown...We investigate the possibility for two-mode probability density function (PDF) to have a non-zero flux steady state solution. We take the large volume limit so that the space of modes becomes continuous. It is shown that in this limit all the steady-state twoor higher-mode PDFs are the product of one-mode PDFs. The flux of this steady-state solution turns out to be zero for any finite mode PDF.展开更多
文摘In the background of the design and construction of Smart Grid Operation Supporting System for District Power Networks, this paper established the weighted fault probability model of the overhead line which is based on equipment operating status, utility theory and fuzzy theory. In this model, the proper membership function is adopted to describe the influence of lightning, wind speed, line ice and temperature, and the outage rate of overhead line, derived from historical statistics, is amended. Based on this model, the power supply risk analysis software is developed to calculate the online risk indicators of district grid, and provide real-time decision support information based on risk theory for scheduling operations personnel.
文摘A general failure probability simulation and deviation evaluation methods were presented for fuzzy safety state and fuzzy failure state. And the corresponding number integral method was simultaneously established. As the distribution of state variable and the membership of the state variable to the fuzzy safety set were normal, the general failure probability of the single failure mode had precise analytic solution, which was used to verify the precision of the presented methods. The results show that the evaluation of the simulation method convergences to the analytic solution with the number increase of the sampling. The above methods for the single failure mode was extended to the multi-mode by the expansion and probability principles. The presented methods were applied to the engineering problem. For the number of significant mode is not too many, the high precision solution can be given by the presented number simulation and number integral methods, which is illustrated by the engineering examples. In addition, the application scope of the methods was discussed.
基金Supported by the National Natural Science Foundation of China (No. 40776006)Shanghai Typhoon Research Fund (No.2009ST05)
文摘The parameters of principal and directional extrema in a marine environment are important in marine engineering design, especially for appropriate construction of oceanic platforms and other structures. When designing wave walls and break water structures, the orientation of the breakwater or seawall depends mainly on the direction of the strongest waves. However, the strength of the breakwater and the elevation of the seawall depend on the magnitude of the biggest wave height of the strongest waves. Thus, identification of directional extrema plays an important role in the design of wave factors. When calculating the directional extremum, different materials may require different specific computational methods, yet few theoretical studies have been conducted in this field of research. Based on multivariate extremnm statistical theory, this paper utilizes a discrete random variable to build a joint probability model compounded by a discrete random variable and a multivariate continuous random variable. Furthermore, this paper provides the first investigation on the theories and methodologies to deduce wave directional extrema. The results provide tools for both creating the calculation method of the directional extremum value and providing the rational directional extremum parameters for marine engineering design.
基金Projects(51021004,51379141)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.
基金supported by the National Natural Science Foundation of China(61374073,61503356)Anhui Provincial Natural Science Foundation(1608085QF153)
文摘In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achievements, controller design of MJLSs pays more attention to state/output feedback control for stability, while the system cost in practice is out of consideration. In this paper, we propose a control mechanism consisting of two parts: finite-path-dependent state feedback controller design with which uniform stability of MJLSs can be ensured, and mode feedback control which aims to decrease system cost. Differing from the traditional state/output feedback controller design, the main novelty is that the proposed control mechanism not only guarantees system stability, but also decreases system cost effectively by adjusting the occurrence probability of system modes. The effectiveness of the proposed mechanism is illustrated via numerical examples.
文摘The effects of time-delayed feedback control in a single-mode laser system is investigated.Using the smalltime delay approximation,the analytic expression of the stationary probability distribution function of the laser field isobtained.The mean,normalized variance and skewness of the steady-state laser intensity are calculated.It is found thatthe time-delayed feedback control can suppress the intensity fluctuation of the laser system.The numerical simulationsare in good agreement with the approximate analytic results.
基金Project supported by the Korean Research Foundation of the Korea Government (MEST) (Grant No. 2009-0073081)
文摘We investigate the possibility for two-mode probability density function (PDF) to have a non-zero flux steady state solution. We take the large volume limit so that the space of modes becomes continuous. It is shown that in this limit all the steady-state twoor higher-mode PDFs are the product of one-mode PDFs. The flux of this steady-state solution turns out to be zero for any finite mode PDF.