Frequency domain wave equation forward modeling is a problem of solving large scale linear sparse systems which is often subject to the limits of computational efficiency and memory storage. Conventional Gaussian elim...Frequency domain wave equation forward modeling is a problem of solving large scale linear sparse systems which is often subject to the limits of computational efficiency and memory storage. Conventional Gaussian elimination cannot resolve the parallel computation of huge data. Therefore, we use the Gaussian elimination with static pivoting (GESP) method for sparse matrix decomposition and multi-source finite-difference modeling. The GESP method does not only improve the computational efficiency but also benefit the distributed parallel computation of matrix decomposition within a single frequency point. We test the proposed method using the classic Marmousi model. Both the single-frequency wave field and time domain seismic section show that the proposed method improves the simulation accuracy and computational efficiency and saves and makes full use of memory. This method can lay the basis for waveform inversion.展开更多
In this work we derived and analyzed the stability structure of an order eight rational integrator wherein our numerator and denominator is 4 (i.e. m = n = 4) for the solution of problems in ordinary differential equa...In this work we derived and analyzed the stability structure of an order eight rational integrator wherein our numerator and denominator is 4 (i.e. m = n = 4) for the solution of problems in ordinary differential equations. The integrator was observed to be A-stable and also L-stable.展开更多
Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are ...Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are full and can become very ill- conditioned. Similarly, the Hilbert and Vandermonde have full matrices and become ill-conditioned. The difference between a coefficient matrix generated by C<sup>∞</sup>-RBFs for partial differential or integral equations and Hilbert and Vandermonde systems is that C<sup>∞</sup>-RBFs are very sensitive to small changes in the adjustable parameters. These parameters affect the condition number and solution accuracy. The error terrain has many local and global maxima and minima. To find stable and accurate numerical solutions for full linear equation systems, this study proposes a hybrid combination of block Gaussian elimination (BGE) combined with arbitrary precision arithmetic (APA) to minimize the accumulation of rounding errors. In the future, this algorithm can execute faster using preconditioners and implemented on massively parallel computers.展开更多
基金supported by China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2008ZX05004-006)
文摘Frequency domain wave equation forward modeling is a problem of solving large scale linear sparse systems which is often subject to the limits of computational efficiency and memory storage. Conventional Gaussian elimination cannot resolve the parallel computation of huge data. Therefore, we use the Gaussian elimination with static pivoting (GESP) method for sparse matrix decomposition and multi-source finite-difference modeling. The GESP method does not only improve the computational efficiency but also benefit the distributed parallel computation of matrix decomposition within a single frequency point. We test the proposed method using the classic Marmousi model. Both the single-frequency wave field and time domain seismic section show that the proposed method improves the simulation accuracy and computational efficiency and saves and makes full use of memory. This method can lay the basis for waveform inversion.
文摘In this work we derived and analyzed the stability structure of an order eight rational integrator wherein our numerator and denominator is 4 (i.e. m = n = 4) for the solution of problems in ordinary differential equations. The integrator was observed to be A-stable and also L-stable.
文摘Continuously differentiable radial basis functions (C<sup>∞</sup>-RBFs), while being theoretically exponentially convergent are considered impractical computationally because the coefficient matrices are full and can become very ill- conditioned. Similarly, the Hilbert and Vandermonde have full matrices and become ill-conditioned. The difference between a coefficient matrix generated by C<sup>∞</sup>-RBFs for partial differential or integral equations and Hilbert and Vandermonde systems is that C<sup>∞</sup>-RBFs are very sensitive to small changes in the adjustable parameters. These parameters affect the condition number and solution accuracy. The error terrain has many local and global maxima and minima. To find stable and accurate numerical solutions for full linear equation systems, this study proposes a hybrid combination of block Gaussian elimination (BGE) combined with arbitrary precision arithmetic (APA) to minimize the accumulation of rounding errors. In the future, this algorithm can execute faster using preconditioners and implemented on massively parallel computers.