Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The tol...Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The toluene adsorption capacities of the regeneration AC(RAC)samples can be significantly improved by adopting the heteroatomic modification strategy.RAC-P and RAC-S have the same specific surface area(1156 m^(2)/g)and similar porous structures.However,they have different toluene adsorption capacities,with 316.22 mg/g for RAC-P and 460.12 mg/g for RAC-S,which are 1.6 and 2.4 times greater than that for RAC.The X-ray photoelectron spectroscopy measurements showed that the increase in the amount ofπ–π^(2)chemical bond over the AC surface results in the improvement of the toluene adsorption performance.The density functional theory results showed that the S-containing functional groups loaded near the defect sites of RAC-S promote toluene adsorption.Moreover,reusability tests showed that RAC-S still retains 86%of its adsorption activity after four consecutive adsorption–desorption experiments.This indicates that the heteroatomic modification method affords excellent toluene adsorption performance and recycling practicability,which not only is beneficial for achieving the rational utilization of solid waste resources but also provides a practical method for the efficient elimination of volatile organic compounds.展开更多
Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for...Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for the removal of Pb^2+ from aqueous solution. The impacts of the Pb25 adsorption capacities of the acid-modified carbons oxidized with HNO3 were also investigated. The surface functional groups of PAC were confirmed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Boehm titration. The textural properties (surface area, total pore volume) were evaluated from the nitrogen adsorption isotherm at 77 K. The experimental results presented indicated that the adsorption data fitted better with the Langmuir adsorption model. A comparative study with a commercial granular activated carbon (GAC) showed that PAC was 10.3 times more efficient compared to GAC based on Langmuir maximum adsorption capacity. Further analysis results by the Langmuir equation showed that HNO3 [20% (by mass)] modified PAC has larger adsorption capacity of Pb^2+ from aqueous solution (as much as 35.5 mg·g^-1). The adsorption capacity enhancement ascribed to pore widening, increased cation-exchange capacity by oxygen groups, and the promoted hydrophilicity of the carbon surface.展开更多
Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid st...Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al_2O_3-based inclusions during secondary refining. The results showed that Al_2O_3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO–MgO–Al_2O_3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3 wt% and the temperature is higher than 1843 K.展开更多
Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompa...Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.展开更多
A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz...A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.展开更多
To investigate the effects of carbon surface characteristics on NH3 adsorption,coal-based and coconut shell activated carbons were modified by treatment with oxidants.The surface properties of the carbons were charact...To investigate the effects of carbon surface characteristics on NH3 adsorption,coal-based and coconut shell activated carbons were modified by treatment with oxidants.The surface properties of the carbons were characterized by low temperature nitrogen sorption,by Boehm's titrations and by XPS techniques.NH3 adsorption isotherms of the original and the modified carbons were determined.The results show that the carbons were oxidized by HNO3 and(NH4)2S2O8,and that there was an increase in oxygen containing functional groups on the surface.However,the pore-size distribution of the coal-based carbons was changed after KMnO4 treatment.It was found that the NH3 adsorption capacity of the modified carbons was enhanced and that the most pronounced enhancement results from(NH4)2S2O8 oxidation.Under our experimental conditions,the capacity is positively cor- rected to the number of surface functional groups containing oxygen,and to the number of micro-pores.Furthermore,an empirical model of the relationship between NH3 adsorption and multiple factors on the carbon surface was fit using a complex regression method.展开更多
The performance of vanadium flow batteries (VFBs) is closely related to the materials used in the bipo- lar plates. Carbon-based composite bipolar plates are particularly suitable for VFB applications. However. most...The performance of vanadium flow batteries (VFBs) is closely related to the materials used in the bipo- lar plates. Carbon-based composite bipolar plates are particularly suitable for VFB applications. However. most original preparation methods cannot simultaneously achieve good electrical conductivity and me- chanical performance. In this paper, we propose a novel approach to fabricating bipolar plates with car- bon plastic materials, including four steps, namely coating a poly (vinylidene fluoride) (PVDF) solution onto carbon felt, solvent evaporation, hot-pressing, and surface modification. The resulting bipolar plates showed high conductivity, good mechanical strength, and corrosion resistance. Surface modification by coating with carbon nanotubes (CNTs) removed the PVDF-rich layer from the surface of the carbon fibers. The high surface area of the CNT withdrew PVDF resin from the carbon fiber surface, and promoted the formation of a conductive network. The flexibility and battery charge-discharge cycle measurements showed that the composite bipolar plates can meet requirements for VFB applications.展开更多
Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and cataly...Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and catalysis capacity for SO2. The surface properties of the untreated and plasma-treated VACFs were diagnosed by SEM, BET, FTIR, and XPS, and the adsorption capacities of VACFs for SO2 were also compared and discussed. The results show that after the plasma treatment, the external surface of VACFs was etched and became rougher, while the surface area and the total pore volume decreased. FTIR and XPS revealed that nitrogen atoms were introduced onto the VACFs surface and the distribution of functional groups on the VACFs surface was changed remarkably. The adsorption characteristic of SO2 indicates that the plasmatreated VACFs have better adsorption capacity than the original VACFs due to the nitrogen functional groups and new functional groups formed in modification, which is beneficial to the adsorption of SO2.展开更多
Covalent modification of shortened multiwalled carbon nanombes (MWNTs) with a natural low molecular weight chitosan (LMCS) was accomplished by the nucleophilic substitution reaction. The LMCS modified MWNTs (MWNT...Covalent modification of shortened multiwalled carbon nanombes (MWNTs) with a natural low molecular weight chitosan (LMCS) was accomplished by the nucleophilic substitution reaction. The LMCS modified MWNTs (MWNT-LMCS) were characterized by FTIR, solid-state ^13C NMR, and XPS spectroscopies, thermogravimetric analysis, and transmission electron microscopy. The results revealed that amino and primary hydroxyl groups of the LMCS participated mainly in the formation of the MWNT-LMCS conjugates. The MWNT-LMCS consists of 58 wt.% LMCS, and about four molecular chains of the LMCS were attached to 1000 carbon atoms of the nanotube sidewalls. As a novel derivative of the MWNTs, the MWNT-LMCS not only solved in DMF, DMAc and DMSO, but also in aqueous acetic acid solution.展开更多
A series of activated carbons from Taixi anthracite were prepared by steam activation in the presence of KOH and then they were modified by different methods. The regulation of porosity and the modification of surface...A series of activated carbons from Taixi anthracite were prepared by steam activation in the presence of KOH and then they were modified by different methods. The regulation of porosity and the modification of surface chemistry were carried out with the aim to improve the benzene adsorption capacity of activated carbon. The influences of KOH and activation process parameters including activation temperature, activation time and steam flow rate on porosity of activated carbon were evaluated, and the effect of modification methods on surface chemistry was investigated. Also, the relationship between benzene adsorption capacity and porosity and surface chemistry was analyzed. Results show that activation temperature is the dominant factor in the activation process; the introduction of KOH into the raw material can enhance the reactivity of char in activation process, meanwhile it shows a negative effect on the porosity development, especially on the mesopore development. Results of FTIR analysis indicate that anthracite-based activated carbon with condensed aromatics and chemically inert oxygen does not present the nature to be surface modified. Besides, benzene adsorption capacity has an approximate linear relationship with surface area and in our preparation, benzene adsorption capacity and surface area of activated carbon are up to 1210 m 2 /g and 423 mg/g, respectively.展开更多
An efficient strategy that comprised shorten, chain extension, active groups introducing and homogeneous reaction tactics, was adopted to modify multiwalled carbon nanotubes (MWNTs) with cellulose acetate (CA). Sp...An efficient strategy that comprised shorten, chain extension, active groups introducing and homogeneous reaction tactics, was adopted to modify multiwalled carbon nanotubes (MWNTs) with cellulose acetate (CA). Specially, by utilizing 2,4,6-trichloro- 1,3,5-triazine, a reactive intermediate of the MWNTs (MWNT-triazine) was obtained. Suitable solubility of the MWNT-triazine helps make the homogeneous modification become reality. Detailed characterizations further verified that reaction between chloride atoms in the MWNT-triazine and hydroxyl groups in the CA had contributed to the formation of MWNT-CA conjugates. The novel MWNT-CA consists of carbon (76.3%), oxygen (18.4%) and nitrogen (5.3%). With a nanotube-attached CA content of 42.8 wt%, the MWNT-CA is readily soluble in DMSO, NMP, DMF and DMAc. Confirmation of the CA-based modification route might lead to studies aiming for specific sorption and isolation.展开更多
Effect of rare earth alloy modification on properties and microstructure of high carbon equivalent gray cast iron was investigated.The experimental results show that in the way of mechanical property,when the addition...Effect of rare earth alloy modification on properties and microstructure of high carbon equivalent gray cast iron was investigated.The experimental results show that in the way of mechanical property,when the addition of rare earth alloy is 0.2% and 0.3%,the tensile strength of cast iron increases.In the way of microstructure,the addition of rare earth alloy increases the number of primary austenite dendrites,reduces secondary dendritic arm spacing,and changes the eutectic size and quantity.When rare earth alloy is added into gray cast iron,the morphology and quantity of graphite play a major role on the improvement of tensile strength.展开更多
To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare ...To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.展开更多
A kind of modifier was synthesized to modify the surface of nanometer calcium carbonate (abbreviated as nano-CaCO3), which is used in architectural coatings. The modification technology of the nano-CaCO3 was studied...A kind of modifier was synthesized to modify the surface of nanometer calcium carbonate (abbreviated as nano-CaCO3), which is used in architectural coatings. The modification technology of the nano-CaCO3 was studied through orthogonal experimental methods. The factors studied were rotation speed, modifier dosage, emulsification temperature, emulsification time and heat aging time after emulsification. Optimized conditions for modification of the surface were: rotation speed 16000 r/min; modifier dosage 3%; emulsification temperature 75 ℃; emulsification time 60 min and aging time 40 min. The modified nano-CaCO3 was also studied by size-distribution measurements, transmission electron microscopy, infrared spectroscopy and thermal analysis. The results show that the size distribution of the modified nano-CaCO3 is uniform and that there are chemi-sorption and physi-sorption between the nano-CaCO3 and the modifier. Compared to traditional architectural coatings without nano-CaCO3, the nanometer composite coatings are obviously improved in respect to dirt resistance, scrub resistance, thixotropy, water resistance, alkalinity resistance and aging resistance.展开更多
The surface modification of nanometer carbon material has been studied by using an Induced Dielectric Barrier Discharge Plasma device (IDBD). The experimental results show that with different work gases and different ...The surface modification of nanometer carbon material has been studied by using an Induced Dielectric Barrier Discharge Plasma device (IDBD). The experimental results show that with different work gases and different discharge conditions, the surface behaviors of carbon black can be changed according to needs, including the use of different functional groups and the change of the surface roughness of carbon particles etc., which increased the grinding and dispersion abilities in binder.展开更多
Commercial spherical activated carbon(SAC) was modified by impregnation to enhance the catalytic properties of SAC in acetylene hydrochlorination through melamine modification. Different modification conditions for ...Commercial spherical activated carbon(SAC) was modified by impregnation to enhance the catalytic properties of SAC in acetylene hydrochlorination through melamine modification. Different modification conditions for SAC with nitrogen were compared by changing the SAC-Melamine ratios. The effect of carbonization temperature on the modification was also investigated. Surface chemistry and adsorption properties of the modified and unmodified SACs were studied by scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS), elementary analysis, BET, and temperature-programmed desorption(TPD). Moreover, the catalytic properties of SAC in acetylene hydrochlorination under differently modified conditions were also investigated. Elemental analysis showed that the nitrogen content of the modified SAC was greatly improved. XPS revealed that nitrogen mainly exists in Pyrrole nitrogen and Pyridine nitrogen. TPD showed that desorption of C2H2 was changed by modification. The conversion rate of acetylene was up to 70% under the following reaction conditions: temperature, 150 ℃; C2H2 hourly space velocity(GHSV), 36 h-1; feed volume ratio V(HCl)/V(C2H2) = 1.15. The catalytic properties of SAC were improved significantly via melamine modification.展开更多
Solar radiation modification(SRM,also termed as geoengineering)has been proposed as a potential option to counteract anthropogenic warming.The underlying idea of SRM is to reduce the amount of sunlight reaching the at...Solar radiation modification(SRM,also termed as geoengineering)has been proposed as a potential option to counteract anthropogenic warming.The underlying idea of SRM is to reduce the amount of sunlight reaching the atmosphere and surface,thus offsetting some amount of global warming.Here,the authors use an Earth system model to investigate the impact of SRM on the global carbon cycle and ocean biogeochemistry.The authors simulate the temporal evolution of global climate and the carbon cycle from the pre-industrial period to the end of this century under three scenarios:the RCP4.5 CO_(2) emission pathway,the RCP8.5 CO_(2) emission pathway,and the RCP8.5 CO_(2) emission pathway with the implementation of SRM to maintain the global mean surface temperature at the level of RCP4.5.The simulations show that SRM,by altering global climate,also affects the global carbon cycle.Compared to the RCP8.5 simulation without SRM,by the year 2100,SRM reduces atmospheric CO_(2) by 65 ppm mainly as a result of increased CO_(2) uptake by the terrestrial biosphere.However,SRM-induced change in atmospheric CO_(2) and climate has a small effect in mitigating ocean acidification.By the year 2100,relative to RCP8.5,SRM causes a decrease in surface ocean hydrogen ion concentration([H^(+)])by 6% and attenuates the seasonal amplitude of[H^(+)]by about 10%.The simulations also show that SRM has a small effect on globally integrated ocean net primary productivity relative to the high-CO_(2) simulation without SRM.This study contributes to a comprehensive assessment of the effects of SRM on both the physical climate and the global carbon cycle.展开更多
Surface modification of calcium carbonate particles using sodium stearate(SDS) as a modification agent incorporated with the simultaneous wet ultra-fine grinding in the laboratory stirred mill was investigated. The ph...Surface modification of calcium carbonate particles using sodium stearate(SDS) as a modification agent incorporated with the simultaneous wet ultra-fine grinding in the laboratory stirred mill was investigated. The physical properties and application properties of modified calcium carbonate were measured and evaluated. The action mechanism between SDS and calcium carbonate in the modification was studied by infrared spectrometry(IR) and X-ray photoelectron energy spectroscopy(XPS). The results indicate that the crushing mechanic force intensity can obviously influence the modification effect of calcium carbonate because of mechano-chemical effect. The hydrophilic surface of calcium carbonate is turned into hydrophobic after modification. The properties of polyethylene(PE) filled by modified calcium carbonate powder is markedly improved. And the adsorption of SDS could occur by chemical reaction with calcium carbonate surface.展开更多
Modification conditions determine the surface topography and the active material phase composition of a catalyst.To study the influence of modification on a carbon-based sorbent,coconut husk activated carbon(AC)which ...Modification conditions determine the surface topography and the active material phase composition of a catalyst.To study the influence of modification on a carbon-based sorbent,coconut husk activated carbon(AC)which was activated using HNO3 and modified by FeSO4 and Fe(NO3)3 was examined.The pore textures and surface chemical characteristics of the carbon materials were examined by scanning electron microscopy(SEM),Brunner-Emmet-Teller(BET),X-ray diffraction(XRD)and Fourier transform infrared(FTIR)spectroscopy.The surface topography,the pore structure,active materials,and functional groups of AC,AC modificated by HNO3(HNO3/AC for short),and AC modificated by FeSO4 and Fe(NO3)3(Fe/AC for short)were systematically studied.Subsequently,the mechanism of modifying the conditions for the carbon materials was determined.Results showed that the surface micro topography of HNO3/AC became unsystematic and disordered.After modification with FeSO4,the ferriferous oxide was mainly present as a near-spherical crystal.Ferriferous oxides from Fe(NO3)3 modification mainly exhibited a plate shape.HNO3 modification could enlarge the pores but decrease the specific surface area of AC.FeSO4 modification resulted in a new net post structure in the pore canal of AC.Fe(NO3)3 modification caused the pore space structure to develop in the interior,and a higher calcination temperature was useful for ablation.The ash content of the AC was substantially reduced upon HNO3 modification.Upon FeSO4 modification,α-FeOOH,α-Fe2O3 andγ-Fe2O3 coexisted under the condition of a lower concentration of FeSO4 and a lower calcination temperature,and a higher FeSO4 concentration and calcination temperature generated moreα-Fe2O3.The same Fe(NO3)3 modification and a higher calcination temperature were beneficial to the minor chipping formation ofγ-Fe2O3.A higher Fe(NO3)3 loading produced a lower graphitization degree.HNO3 modification formed various new oxygen-containing functional groups and few nitrogen-containing groups.Based on the cover,FeSO4 and Fe(NO3)3 modification could decrease the oxygen-containing and nitrogen-containing functional groups.These results could optimize the modification condition and improve physical and chemical properties of carbon-based sorbents.展开更多
This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly desc...This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.展开更多
基金National key R&D Program of China(No.2022YFC3701903)natural science foundation of Shanxi Province(No.202203021211178)National Natural Science Foundation of China(51901209)for financial support.
文摘Solid-waste-based activated carbon(AC)was utilized as a carbon source to synthesize a series of carbon-based functional material RAC-X(X=P and S,where P and S denote phosphoric and sulfuric acids,respectively).The toluene adsorption capacities of the regeneration AC(RAC)samples can be significantly improved by adopting the heteroatomic modification strategy.RAC-P and RAC-S have the same specific surface area(1156 m^(2)/g)and similar porous structures.However,they have different toluene adsorption capacities,with 316.22 mg/g for RAC-P and 460.12 mg/g for RAC-S,which are 1.6 and 2.4 times greater than that for RAC.The X-ray photoelectron spectroscopy measurements showed that the increase in the amount ofπ–π^(2)chemical bond over the AC surface results in the improvement of the toluene adsorption performance.The density functional theory results showed that the S-containing functional groups loaded near the defect sites of RAC-S promote toluene adsorption.Moreover,reusability tests showed that RAC-S still retains 86%of its adsorption activity after four consecutive adsorption–desorption experiments.This indicates that the heteroatomic modification method affords excellent toluene adsorption performance and recycling practicability,which not only is beneficial for achieving the rational utilization of solid waste resources but also provides a practical method for the efficient elimination of volatile organic compounds.
文摘Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for the removal of Pb^2+ from aqueous solution. The impacts of the Pb25 adsorption capacities of the acid-modified carbons oxidized with HNO3 were also investigated. The surface functional groups of PAC were confirmed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Boehm titration. The textural properties (surface area, total pore volume) were evaluated from the nitrogen adsorption isotherm at 77 K. The experimental results presented indicated that the adsorption data fitted better with the Langmuir adsorption model. A comparative study with a commercial granular activated carbon (GAC) showed that PAC was 10.3 times more efficient compared to GAC based on Langmuir maximum adsorption capacity. Further analysis results by the Langmuir equation showed that HNO3 [20% (by mass)] modified PAC has larger adsorption capacity of Pb^2+ from aqueous solution (as much as 35.5 mg·g^-1). The adsorption capacity enhancement ascribed to pore widening, increased cation-exchange capacity by oxygen groups, and the promoted hydrophilicity of the carbon surface.
基金financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-TP-16-079A1)the National Science Foundation for Young Scientists of China (No. 51704021)+1 种基金the Joint Funds of National Natural Science Foundation of China (No. U1560203)supported by Beijing Key Laboratory of Special Melting and Preparation of High-end Metal Materials
文摘Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al_2O_3-based inclusions during secondary refining. The results showed that Al_2O_3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO–MgO–Al_2O_3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3 wt% and the temperature is higher than 1843 K.
基金Project(AA18242008)supported by the Guangxi Science&Technology Major Project,ChinaProject(HZXYKFKT201904)supported by the Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization,China。
文摘Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.
基金supported by the National Defense Science and Technology Innovation Zone Project(No.18-H863-05-ZT-001-018-09)
文摘A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.
基金Project 2001AA527010-01 supported by the National High Technology Research and Development Program of China
文摘To investigate the effects of carbon surface characteristics on NH3 adsorption,coal-based and coconut shell activated carbons were modified by treatment with oxidants.The surface properties of the carbons were characterized by low temperature nitrogen sorption,by Boehm's titrations and by XPS techniques.NH3 adsorption isotherms of the original and the modified carbons were determined.The results show that the carbons were oxidized by HNO3 and(NH4)2S2O8,and that there was an increase in oxygen containing functional groups on the surface.However,the pore-size distribution of the coal-based carbons was changed after KMnO4 treatment.It was found that the NH3 adsorption capacity of the modified carbons was enhanced and that the most pronounced enhancement results from(NH4)2S2O8 oxidation.Under our experimental conditions,the capacity is positively cor- rected to the number of surface functional groups containing oxygen,and to the number of micro-pores.Furthermore,an empirical model of the relationship between NH3 adsorption and multiple factors on the carbon surface was fit using a complex regression method.
基金financial support from the National Natural Science Foundation of China (21776154)the National Basic Research Plan (2012AA051203)
文摘The performance of vanadium flow batteries (VFBs) is closely related to the materials used in the bipo- lar plates. Carbon-based composite bipolar plates are particularly suitable for VFB applications. However. most original preparation methods cannot simultaneously achieve good electrical conductivity and me- chanical performance. In this paper, we propose a novel approach to fabricating bipolar plates with car- bon plastic materials, including four steps, namely coating a poly (vinylidene fluoride) (PVDF) solution onto carbon felt, solvent evaporation, hot-pressing, and surface modification. The resulting bipolar plates showed high conductivity, good mechanical strength, and corrosion resistance. Surface modification by coating with carbon nanotubes (CNTs) removed the PVDF-rich layer from the surface of the carbon fibers. The high surface area of the CNT withdrew PVDF resin from the carbon fiber surface, and promoted the formation of a conductive network. The flexibility and battery charge-discharge cycle measurements showed that the composite bipolar plates can meet requirements for VFB applications.
基金supported by National Natural Science Foundation of China(No.50876077)
文摘Viscose-based activated carbon fibers (VACFs) were treated by a dielectric-barrier discharge plasma under the feed gas of N2. The surface functional groups of VACFs were modified to improve the adsorption and catalysis capacity for SO2. The surface properties of the untreated and plasma-treated VACFs were diagnosed by SEM, BET, FTIR, and XPS, and the adsorption capacities of VACFs for SO2 were also compared and discussed. The results show that after the plasma treatment, the external surface of VACFs was etched and became rougher, while the surface area and the total pore volume decreased. FTIR and XPS revealed that nitrogen atoms were introduced onto the VACFs surface and the distribution of functional groups on the VACFs surface was changed remarkably. The adsorption characteristic of SO2 indicates that the plasmatreated VACFs have better adsorption capacity than the original VACFs due to the nitrogen functional groups and new functional groups formed in modification, which is beneficial to the adsorption of SO2.
文摘Covalent modification of shortened multiwalled carbon nanombes (MWNTs) with a natural low molecular weight chitosan (LMCS) was accomplished by the nucleophilic substitution reaction. The LMCS modified MWNTs (MWNT-LMCS) were characterized by FTIR, solid-state ^13C NMR, and XPS spectroscopies, thermogravimetric analysis, and transmission electron microscopy. The results revealed that amino and primary hydroxyl groups of the LMCS participated mainly in the formation of the MWNT-LMCS conjugates. The MWNT-LMCS consists of 58 wt.% LMCS, and about four molecular chains of the LMCS were attached to 1000 carbon atoms of the nanotube sidewalls. As a novel derivative of the MWNTs, the MWNT-LMCS not only solved in DMF, DMAc and DMSO, but also in aqueous acetic acid solution.
基金the financial support by the Special Fund for Basic Scientific Research of Central Colleges (No.2009KH10)the Beijing Postdoctoral Fund (No. B148)the Green Shoots Plan of Beijing Academy of Science and Technology of China (No. B142)
文摘A series of activated carbons from Taixi anthracite were prepared by steam activation in the presence of KOH and then they were modified by different methods. The regulation of porosity and the modification of surface chemistry were carried out with the aim to improve the benzene adsorption capacity of activated carbon. The influences of KOH and activation process parameters including activation temperature, activation time and steam flow rate on porosity of activated carbon were evaluated, and the effect of modification methods on surface chemistry was investigated. Also, the relationship between benzene adsorption capacity and porosity and surface chemistry was analyzed. Results show that activation temperature is the dominant factor in the activation process; the introduction of KOH into the raw material can enhance the reactivity of char in activation process, meanwhile it shows a negative effect on the porosity development, especially on the mesopore development. Results of FTIR analysis indicate that anthracite-based activated carbon with condensed aromatics and chemically inert oxygen does not present the nature to be surface modified. Besides, benzene adsorption capacity has an approximate linear relationship with surface area and in our preparation, benzene adsorption capacity and surface area of activated carbon are up to 1210 m 2 /g and 423 mg/g, respectively.
文摘An efficient strategy that comprised shorten, chain extension, active groups introducing and homogeneous reaction tactics, was adopted to modify multiwalled carbon nanotubes (MWNTs) with cellulose acetate (CA). Specially, by utilizing 2,4,6-trichloro- 1,3,5-triazine, a reactive intermediate of the MWNTs (MWNT-triazine) was obtained. Suitable solubility of the MWNT-triazine helps make the homogeneous modification become reality. Detailed characterizations further verified that reaction between chloride atoms in the MWNT-triazine and hydroxyl groups in the CA had contributed to the formation of MWNT-CA conjugates. The novel MWNT-CA consists of carbon (76.3%), oxygen (18.4%) and nitrogen (5.3%). With a nanotube-attached CA content of 42.8 wt%, the MWNT-CA is readily soluble in DMSO, NMP, DMF and DMAc. Confirmation of the CA-based modification route might lead to studies aiming for specific sorption and isolation.
文摘Effect of rare earth alloy modification on properties and microstructure of high carbon equivalent gray cast iron was investigated.The experimental results show that in the way of mechanical property,when the addition of rare earth alloy is 0.2% and 0.3%,the tensile strength of cast iron increases.In the way of microstructure,the addition of rare earth alloy increases the number of primary austenite dendrites,reduces secondary dendritic arm spacing,and changes the eutectic size and quantity.When rare earth alloy is added into gray cast iron,the morphology and quantity of graphite play a major role on the improvement of tensile strength.
基金Funded by the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0912)。
文摘To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.
文摘A kind of modifier was synthesized to modify the surface of nanometer calcium carbonate (abbreviated as nano-CaCO3), which is used in architectural coatings. The modification technology of the nano-CaCO3 was studied through orthogonal experimental methods. The factors studied were rotation speed, modifier dosage, emulsification temperature, emulsification time and heat aging time after emulsification. Optimized conditions for modification of the surface were: rotation speed 16000 r/min; modifier dosage 3%; emulsification temperature 75 ℃; emulsification time 60 min and aging time 40 min. The modified nano-CaCO3 was also studied by size-distribution measurements, transmission electron microscopy, infrared spectroscopy and thermal analysis. The results show that the size distribution of the modified nano-CaCO3 is uniform and that there are chemi-sorption and physi-sorption between the nano-CaCO3 and the modifier. Compared to traditional architectural coatings without nano-CaCO3, the nanometer composite coatings are obviously improved in respect to dirt resistance, scrub resistance, thixotropy, water resistance, alkalinity resistance and aging resistance.
文摘The surface modification of nanometer carbon material has been studied by using an Induced Dielectric Barrier Discharge Plasma device (IDBD). The experimental results show that with different work gases and different discharge conditions, the surface behaviors of carbon black can be changed according to needs, including the use of different functional groups and the change of the surface roughness of carbon particles etc., which increased the grinding and dispersion abilities in binder.
基金Funded by the National Basic Research Program of China(973 Program,2012CB720302)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1161)the Corps Science and Technology Innovation Team Scheme(2011CC001)
文摘Commercial spherical activated carbon(SAC) was modified by impregnation to enhance the catalytic properties of SAC in acetylene hydrochlorination through melamine modification. Different modification conditions for SAC with nitrogen were compared by changing the SAC-Melamine ratios. The effect of carbonization temperature on the modification was also investigated. Surface chemistry and adsorption properties of the modified and unmodified SACs were studied by scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS), elementary analysis, BET, and temperature-programmed desorption(TPD). Moreover, the catalytic properties of SAC in acetylene hydrochlorination under differently modified conditions were also investigated. Elemental analysis showed that the nitrogen content of the modified SAC was greatly improved. XPS revealed that nitrogen mainly exists in Pyrrole nitrogen and Pyridine nitrogen. TPD showed that desorption of C2H2 was changed by modification. The conversion rate of acetylene was up to 70% under the following reaction conditions: temperature, 150 ℃; C2H2 hourly space velocity(GHSV), 36 h-1; feed volume ratio V(HCl)/V(C2H2) = 1.15. The catalytic properties of SAC were improved significantly via melamine modification.
基金supported by the National Natural Science Foundation of China[grant number 41975103].
文摘Solar radiation modification(SRM,also termed as geoengineering)has been proposed as a potential option to counteract anthropogenic warming.The underlying idea of SRM is to reduce the amount of sunlight reaching the atmosphere and surface,thus offsetting some amount of global warming.Here,the authors use an Earth system model to investigate the impact of SRM on the global carbon cycle and ocean biogeochemistry.The authors simulate the temporal evolution of global climate and the carbon cycle from the pre-industrial period to the end of this century under three scenarios:the RCP4.5 CO_(2) emission pathway,the RCP8.5 CO_(2) emission pathway,and the RCP8.5 CO_(2) emission pathway with the implementation of SRM to maintain the global mean surface temperature at the level of RCP4.5.The simulations show that SRM,by altering global climate,also affects the global carbon cycle.Compared to the RCP8.5 simulation without SRM,by the year 2100,SRM reduces atmospheric CO_(2) by 65 ppm mainly as a result of increased CO_(2) uptake by the terrestrial biosphere.However,SRM-induced change in atmospheric CO_(2) and climate has a small effect in mitigating ocean acidification.By the year 2100,relative to RCP8.5,SRM causes a decrease in surface ocean hydrogen ion concentration([H^(+)])by 6% and attenuates the seasonal amplitude of[H^(+)]by about 10%.The simulations also show that SRM has a small effect on globally integrated ocean net primary productivity relative to the high-CO_(2) simulation without SRM.This study contributes to a comprehensive assessment of the effects of SRM on both the physical climate and the global carbon cycle.
基金Project(2032008) supported by the Natural Science Foundation of Beijing City, China
文摘Surface modification of calcium carbonate particles using sodium stearate(SDS) as a modification agent incorporated with the simultaneous wet ultra-fine grinding in the laboratory stirred mill was investigated. The physical properties and application properties of modified calcium carbonate were measured and evaluated. The action mechanism between SDS and calcium carbonate in the modification was studied by infrared spectrometry(IR) and X-ray photoelectron energy spectroscopy(XPS). The results indicate that the crushing mechanic force intensity can obviously influence the modification effect of calcium carbonate because of mechano-chemical effect. The hydrophilic surface of calcium carbonate is turned into hydrophobic after modification. The properties of polyethylene(PE) filled by modified calcium carbonate powder is markedly improved. And the adsorption of SDS could occur by chemical reaction with calcium carbonate surface.
基金General Project of Science and Technology Plan of Yunnan Science and Technology Department,China(No.2019FB077)Open Fund of Key Laboratory of Ministry of Education for Metallurgical Emission Reduction and Comprehensive Utilization of Resources,China(No.JKF19-08)。
文摘Modification conditions determine the surface topography and the active material phase composition of a catalyst.To study the influence of modification on a carbon-based sorbent,coconut husk activated carbon(AC)which was activated using HNO3 and modified by FeSO4 and Fe(NO3)3 was examined.The pore textures and surface chemical characteristics of the carbon materials were examined by scanning electron microscopy(SEM),Brunner-Emmet-Teller(BET),X-ray diffraction(XRD)and Fourier transform infrared(FTIR)spectroscopy.The surface topography,the pore structure,active materials,and functional groups of AC,AC modificated by HNO3(HNO3/AC for short),and AC modificated by FeSO4 and Fe(NO3)3(Fe/AC for short)were systematically studied.Subsequently,the mechanism of modifying the conditions for the carbon materials was determined.Results showed that the surface micro topography of HNO3/AC became unsystematic and disordered.After modification with FeSO4,the ferriferous oxide was mainly present as a near-spherical crystal.Ferriferous oxides from Fe(NO3)3 modification mainly exhibited a plate shape.HNO3 modification could enlarge the pores but decrease the specific surface area of AC.FeSO4 modification resulted in a new net post structure in the pore canal of AC.Fe(NO3)3 modification caused the pore space structure to develop in the interior,and a higher calcination temperature was useful for ablation.The ash content of the AC was substantially reduced upon HNO3 modification.Upon FeSO4 modification,α-FeOOH,α-Fe2O3 andγ-Fe2O3 coexisted under the condition of a lower concentration of FeSO4 and a lower calcination temperature,and a higher FeSO4 concentration and calcination temperature generated moreα-Fe2O3.The same Fe(NO3)3 modification and a higher calcination temperature were beneficial to the minor chipping formation ofγ-Fe2O3.A higher Fe(NO3)3 loading produced a lower graphitization degree.HNO3 modification formed various new oxygen-containing functional groups and few nitrogen-containing groups.Based on the cover,FeSO4 and Fe(NO3)3 modification could decrease the oxygen-containing and nitrogen-containing functional groups.These results could optimize the modification condition and improve physical and chemical properties of carbon-based sorbents.
基金National Natural Science Foundation of China (No. 20336020) and Science Foundation of Guangdong Province of China (2002C32103).
文摘This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.