In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expre...In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind.展开更多
The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J.P.Boyd's rational...The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J.P.Boyd's rational Chebyshev basis.展开更多
The authors modify a method of Olde Daalhuis and Temme for representing the remainder and coefficients in Airy-type expansions of integrals.By using a class of rational functions,they express these quantities in terms...The authors modify a method of Olde Daalhuis and Temme for representing the remainder and coefficients in Airy-type expansions of integrals.By using a class of rational functions,they express these quantities in terms of Cauchy-type integrals;these expressions are natural generalizations of integral representations of the coe?cients and the remainders in the Taylor expansions of analytic functions.By using the new representation,a computable error bound for the remainder in the uniform asymptotic expansion of the modified Bessel function of purely imaginary order is derived.展开更多
In this paper wavelet functions are introduced in the context of q-theory. We precisely extend the case of Bessel and q-Bessel wavelets to the generalized q-Bessel wavelets. Starting from the (q,v)-extension (v = ...In this paper wavelet functions are introduced in the context of q-theory. We precisely extend the case of Bessel and q-Bessel wavelets to the generalized q-Bessel wavelets. Starting from the (q,v)-extension (v = (α,β)) of the q-case, associated generalized q-wavelets and generalized q-wavelet transforms are developed for the new context. Reconstruction and Placherel type formulas are proved.展开更多
The existence, uniqueness and regularity of solutions to the Cauchy problem posed for a nonhomogeneous viscous Burger's equation were shown in Chung, Kim and Slemrod [1] by assuming suitable conditions on initial ...The existence, uniqueness and regularity of solutions to the Cauchy problem posed for a nonhomogeneous viscous Burger's equation were shown in Chung, Kim and Slemrod [1] by assuming suitable conditions on initial data. Moreover, they derived the asymptotic behaviour of solutions of the Cauchy problem by imposing additional conditions on initial data. In this article, we obtain the same asymptotic behaviour of solutions to the Cauchy problem without imposing additional condition on initial data.展开更多
This paper investigates the influences of higher order viscoelasticity and the inhomogeneities of the transversely isotropic elastic parameters on the disturbances in an infinite medium, caused by the presence of a tr...This paper investigates the influences of higher order viscoelasticity and the inhomogeneities of the transversely isotropic elastic parameters on the disturbances in an infinite medium, caused by the presence of a transient radial force or twist on the surface of a cylindrical hole with circular cross section. Following Voigt's model for higher order viscoelasticity, the nonvanishing stress components valid for a transversely isotropic and higher order viscoelastic solid medium have been deduced in terms of radial displacement component. Considering the power law variation of elastic and viscoelastic parameters, the stress equation of motion has been developed. Solving this equation under suitable boundary conditions, due to transient forces and twists, radial displacement and relevant stress components have been determined in terms of modified Bessel functions. The problem for the presence of transient radial force has been numerically analysed. Modulations of displacement and stresses due to different order of viscoelasticity and inhomogeneity have been graphically depicted. The numerical study of the disturbance caused by the presence of twist on the surface may be similarly done but is not pursued in this paper.展开更多
We consider an M/M/2 queueing system with two-heterogeneous servers and multiple vacations. Customers arrive according to a Poisson process. However, customers become impatient when the system is on vacation. We obtai...We consider an M/M/2 queueing system with two-heterogeneous servers and multiple vacations. Customers arrive according to a Poisson process. However, customers become impatient when the system is on vacation. We obtain explicit expressions for the time dependent probabilities,mean and variance of the system size at time t by employing probability generating functions, continued fractions and properties of the modified Bessel functions. Finally, two special cases are provided.展开更多
基金The first author,Mrs.Yan Hong,was partially supported by the Natural Science Foundation of Inner Mongolia(Grant No.2019MS01007)by the Science Research Fund of Inner Mongolia University for Nationalities(Grant No.NMDBY15019)by the Foun-dation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Grant Nos.NJZY19157 and NJZY20119)in China。
文摘In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind.
文摘The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J.P.Boyd's rational Chebyshev basis.
文摘The authors modify a method of Olde Daalhuis and Temme for representing the remainder and coefficients in Airy-type expansions of integrals.By using a class of rational functions,they express these quantities in terms of Cauchy-type integrals;these expressions are natural generalizations of integral representations of the coe?cients and the remainders in the Taylor expansions of analytic functions.By using the new representation,a computable error bound for the remainder in the uniform asymptotic expansion of the modified Bessel function of purely imaginary order is derived.
文摘In this paper wavelet functions are introduced in the context of q-theory. We precisely extend the case of Bessel and q-Bessel wavelets to the generalized q-Bessel wavelets. Starting from the (q,v)-extension (v = (α,β)) of the q-case, associated generalized q-wavelets and generalized q-wavelet transforms are developed for the new context. Reconstruction and Placherel type formulas are proved.
基金S.Engu was supported by Council of Scientific and Industrial Research,India (File no. 25 (0302)/19/EMR-Ⅱ)。
文摘The existence, uniqueness and regularity of solutions to the Cauchy problem posed for a nonhomogeneous viscous Burger's equation were shown in Chung, Kim and Slemrod [1] by assuming suitable conditions on initial data. Moreover, they derived the asymptotic behaviour of solutions of the Cauchy problem by imposing additional conditions on initial data. In this article, we obtain the same asymptotic behaviour of solutions to the Cauchy problem without imposing additional condition on initial data.
文摘This paper investigates the influences of higher order viscoelasticity and the inhomogeneities of the transversely isotropic elastic parameters on the disturbances in an infinite medium, caused by the presence of a transient radial force or twist on the surface of a cylindrical hole with circular cross section. Following Voigt's model for higher order viscoelasticity, the nonvanishing stress components valid for a transversely isotropic and higher order viscoelastic solid medium have been deduced in terms of radial displacement component. Considering the power law variation of elastic and viscoelastic parameters, the stress equation of motion has been developed. Solving this equation under suitable boundary conditions, due to transient forces and twists, radial displacement and relevant stress components have been determined in terms of modified Bessel functions. The problem for the presence of transient radial force has been numerically analysed. Modulations of displacement and stresses due to different order of viscoelasticity and inhomogeneity have been graphically depicted. The numerical study of the disturbance caused by the presence of twist on the surface may be similarly done but is not pursued in this paper.
基金Supported by the National Natural Science Foundation of China(11671204)
文摘We consider an M/M/2 queueing system with two-heterogeneous servers and multiple vacations. Customers arrive according to a Poisson process. However, customers become impatient when the system is on vacation. We obtain explicit expressions for the time dependent probabilities,mean and variance of the system size at time t by employing probability generating functions, continued fractions and properties of the modified Bessel functions. Finally, two special cases are provided.