期刊文献+
共找到3,484篇文章
< 1 2 175 >
每页显示 20 50 100
Ablation behaviour and mechanical performance of ZrB_(2)-ZrC-SiC modified carbon/carbon composites prepared by vacuum infiltration combined with reactive melt infiltration
1
作者 ZHANG Jia-ping SU Xiao-xuan +2 位作者 LI Xin-gang WANG Run-ning FU Qian-gang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期633-644,共12页
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona... The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation. 展开更多
关键词 c/c composites ZrB_(2)-Zrc-Sic Vacuum filtration Reactive melt infiltration Ablation.
下载PDF
Anti-oxidation properties of ZrB_2 modified silicon-based multilayer coating for carbon/carbon composites at high temperatures 被引量:7
2
作者 李贺军 姚西媛 +2 位作者 张雨雷 姚栋嘉 王少龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2094-2099,共6页
To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack ceme... To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer. 展开更多
关键词 c/c composites cOATING ZRB2 anti-oxidation properties
下载PDF
Hybrid multi-objective optimization of microstructural and mechanical properties of B_4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-Ⅱ 被引量:2
3
作者 Mostafa AKBARI Mohammad Hasan SHOJAEEFARD +1 位作者 Parviz ASADI Abolfazl KHALKHALI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2317-2333,共17页
A356alloy was used as the base metal to produce boron carbide(B4C)/A356composites using friction stir processing(FSP).The microstructural and mechanical properties of B4C/A356composites were optimized using artificial... A356alloy was used as the base metal to produce boron carbide(B4C)/A356composites using friction stir processing(FSP).The microstructural and mechanical properties of B4C/A356composites were optimized using artificial neural network(ANN)and non-dominated sorting genetic algorithm-II(NSGA-II).Firstly,microstructural properties of the composites fabricated in different processing conditions were investigated.Results show that FSP parameters such as rotational speed,traverse speed and tool pin profile significantly affect the size of the primary silicon(Si)particles of the base metal,as well as the dispersion quality and volume fraction of reinforcing B4C particles in the composite layer.Higher rotational to traverse speeds ratio accompanied by threaded pin profile leads to better particles distribution,finer Si particles and smaller B4C agglomerations.Secondly,hardness and tensile tests were performed to study mechanical properties of the composites.FSP changes the fracture mechanism from brittle form in the as-received metal to very ductile form in the FSPed specimens.Then,a relation between the FSP parameters and microstructural and mechanical properties of the composites was established using ANN.A modified NSGA-II by incorporating diversity preserving mechanism called theεelimination algorithm was employed to obtain the Pareto-optimal set of FSP parameters. 展开更多
关键词 friction stir processing B4c compositE multi-objective optimization TOPSIS method
下载PDF
EXPERIMENTAL STUDY ON PEK -C MODIFIED EPOXIES AND THE CARBON FIBER COMPOSITES FOR AEROSPACE APPLICATION 被引量:7
4
作者 李暘暘 益小苏 唐邦明 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第4期242-249,共8页
The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took pl... The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took place to form fine epoxy-rich globules dispersing in the PEK-C matrix, in which the epoxy-rich phase had the absolutely higher volume fraction. The phase structure and the interfacial properties were also studied by means of FTIR, DSC, and DMTA as well. An accompanying mechanical determination revealed that an improved toughness was achieved both in the blend casts and in the carbon fiber composites. A composite structural model was hence suggested. 展开更多
关键词 PEK-c thermoset/thermoplastic binary system phase behavior interface TOUGHNESS carbon fiber composites
下载PDF
Modified carbothermal reduction method for synthesis of LiFePO_4/C composite 被引量:1
5
作者 尹艳红 李少玉 +2 位作者 闫琳琳 张会双 杨书廷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期621-626,共6页
With LiAc-2H2O as Li precursor,pure olivine phase LiFePO4/C was synthesized at a relatively low temperature(650 ℃) and short sintering period(4 h) by molten salt carbothermal reduction method.Scanning electron mi... With LiAc-2H2O as Li precursor,pure olivine phase LiFePO4/C was synthesized at a relatively low temperature(650 ℃) and short sintering period(4 h) by molten salt carbothermal reduction method.Scanning electron micrograph shows that particle size of the product is about 1μm,smaller than that of the sample synthesized with Li2CO3 as Li precursor.Electrochemical measurements prove that LiFePO4/C obtained from LiAc-2H2O shows high capacity.The initial discharge capacities are 148 mA-h/g at 0.5C rate and 115 mA-h/g at 5C rate,respectively.After 50 cycles,the capacity retention ratios are 93% and 89% at 0.5C rate and 5C rate,respectively. 展开更多
关键词 LiFePO4/c composite molten salt carbothermal reduction Β-cYcLODEXTRIN
下载PDF
Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
6
作者 吴健铭 许晓静 +3 位作者 ZHANG Xu LUO Yuntian LI Shuaidi HUANG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期174-181,共8页
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp... The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively. 展开更多
关键词 aluminum matrix composites Si c particles multiscale hybrid enhancement heat treatment mechanical properties
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
7
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D c/Sic composites Finite element analyses Multi-scale modeling Thermal conductivity
下载PDF
Ablation Processes for HfC-Coated 2.5D Needle-Punched Composites Used for Aerospace Engines Under Hypersonic Flight Conditions
8
作者 ZHANG Ziyi SHI Zhenyu +2 位作者 NI Jing WANG Jilai ZHANG Chengpeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期645-655,共11页
The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo abla... The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance. 展开更多
关键词 2.5D needle-punched c/Sic composites ablation mechanism arc-heated wind tunnel experiment high enthalpy flow
下载PDF
The effect of modification of matrix on densification efficiency of pitch based carbon composites 被引量:3
9
作者 MOHAMMAD Mahdi Sotoudehnia ALI Khalife Soltani +1 位作者 AMIR Maghsouipour FATOLLAH Moztarzadeh 《Journal of Coal Science & Engineering(China)》 2010年第4期408-414,共7页
Using coal tar pitch as a matrix precursor to prepare carbon materials is widelyused by impregnation/carbonization processing technology.Four different grades of coaltar pitch and a natural pitch were characterized in... Using coal tar pitch as a matrix precursor to prepare carbon materials is widelyused by impregnation/carbonization processing technology.Four different grades of coaltar pitch and a natural pitch were characterized in terms of carbon yield, density, viscosity,and fractionation with solvents, as well as by thermal analysis methods.The suitability ofthese commercially available matrices for densification of 3 dimensional carbon-carboncomposites was examined.The theoretical results compared with experimental results.The highest density after impregnation was obtained using one of the coal tar pitches.Thepredicted results are in reasonable agreement with experiment data.The significance ofthis research is that a special heat treatment regime was conducted.The effects of modificationtemperature on the densification efficiency of composites were investigated andthen structure and characteristics of the composites were determined by scanning electronmicroscopy (SEM), Transmission electron microscopy (TEM) and X-Ray Diffraction (XRD). 展开更多
关键词 PITcH cARBONIZATION IMPREGNATION c/c composites
下载PDF
C/SiC/MoSi_2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites 被引量:5
10
作者 张雨雷 李贺军 +2 位作者 胡志雄 李克智 张磊磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2118-2122,共5页
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the... C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating. 展开更多
关键词 c/c composites c/SIc MOSI2 Sic MULTILAYER cOATING OXIDATION
下载PDF
Bending properties and fracture mechanism of C/C composites with high density preform 被引量:9
11
作者 张明瑜 苏哲安 +1 位作者 李建立 黄启忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1795-1800,共6页
C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high... C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength. 展开更多
关键词 c/c composites chemical vapor infiltration(cVI) high density preform bending properties fracture mechanism
下载PDF
Effect of ZrC-SiC content on microstructure and ablation properties of C/C composites 被引量:3
12
作者 李军 杨鑫 +5 位作者 苏哲安 薛亮 钟平 李帅鹏 黄启忠 刘红卫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2653-2664,共12页
C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/... C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/C-SiC and C/C-ZrC-SiC composites exhibited good ablation resistance under the plasma flame above 2300℃. Withtheincreaseof ZrC content, a continuous oxide layer and a solid Zr-Si-O mesophase were formed during the ablation. And the structure of the formed oxides layer closely linked with the contents of ZrC-SiC ceramics. The solid ZrO2-ZrC and Zr-Si-O mesophase could increase the viscosity of SiO2 moderately and improve the anti-scouring ability. The continuous SiO2-ZrO2-ZrC-SiC layer would serve as a thermal and oxygen barrier for preventing the substratefrom further ablation. The C/C-ZrC-SiC composites with 27.2%ZrC and 7.56%SiC shows superior ablation resistance, and the mass and linear ablation rates are-3.51 mg/s and-1.88 μm/s, respectively. 展开更多
关键词 ZRc SIc c/c composites ZRc SIc ablation precursorinfiltration and pyrolysis
下载PDF
Pyrolysis mechanism of ZrC precursor and fabrication of C/C-ZrC composites by precursor infiltration and pyrolysis 被引量:5
13
作者 刘春轩 陈建勋 +3 位作者 苏哲安 杨鑫 曹柳絮 黄启忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1779-1784,共6页
C/C-ZrC composites were prepared by precursor infiltration and pyrolysis using the organic zirconium as precursor.The conversion mechanisms of the precursors such as the thermal behavior,structural evolution,phase com... C/C-ZrC composites were prepared by precursor infiltration and pyrolysis using the organic zirconium as precursor.The conversion mechanisms of the precursors such as the thermal behavior,structural evolution,phase composition,microstructure,composition of the precursors and products were analyzed by thermal gravimetric analyzer,Fourier transform infrared spectrometer,X-ray diffraction and scanning electron microscope.The results indicate that the ZrC precursor transforms to inorganic ZrO2 from room temperature to 1200 ℃,then reduces to ZrC at 1600 ℃ through the carbothermal reduction reaction.The microstructure of the C/C-ZrC composites was also investigated.The composites exhibit an interesting structure,a coating composed of ZrC ceramic covers the exterior of the composite,and the ZrC ceramic is embedded in the pores of the matrix inside the composite. 展开更多
关键词 Zrc precursor pyrolysis mechanism precursor infiltration and pyrolysis c/c-Zrc composites
下载PDF
Oxidation behavior of C/C composites with SiC/ZrSiO_4-SiO_2 coating 被引量:3
14
作者 李杨 肖鹏 +2 位作者 李专 罗威 周伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期397-405,共9页
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r... A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%. 展开更多
关键词 c/c composite Sic/ZrSiO4-SiO2 coating oxygen partial pressure ANTI-OXIDATION thermal shock residual compressive strength
下载PDF
Flexural destructive process of unidirectional carbon/carbon composites reinforced with in situ grown carbon nanofibers 被引量:2
15
作者 卢雪峰 肖鹏 +1 位作者 徐先锋 陈洁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3134-3141,共8页
Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of... Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites. 展开更多
关键词 carbon nanofiber c/c composites flexural destruction crack propagation
下载PDF
Effect of stress level on fatigue behavior of 2D C/C composites 被引量:2
16
作者 杨茜 李贺军 +1 位作者 虞跨海 张守阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2135-2140,共6页
Laminated carbon fiber clothes were infiltrated to prepare carbon fiber reinforced pyrolytic carbon (C/C) using isothermal chemical vapor infiltration (CVI). The bending fatigue behavior of the infiltrated C/C com... Laminated carbon fiber clothes were infiltrated to prepare carbon fiber reinforced pyrolytic carbon (C/C) using isothermal chemical vapor infiltration (CVI). The bending fatigue behavior of the infiltrated C/C composites was tested under two different stress levels. The residual strength and modulus of all fatigued samples were tested to investigate the effect of maximum stress level on fatigue behavior of C/C composites. The microstructure and damage mechanism were also investigated. The results showed that the residual strength and modulus of fatigued samples were improved. High stress level is more effective to increase the modulus. And for the increase of flexural strength, high stress level is more effective only in low cycles. The fatigue loading weakens the bonding between the matrix and fiber, and then affects the damage propagation pathway, and increases the energy consumption. So the properties of C/C composites are improved. 展开更多
关键词 c/c composites fatigue behavior stress level residual strength
下载PDF
Fabrication of Y_2Si_2O_7 coating and its oxidation protection for C/SiC composites 被引量:3
17
作者 马青松 蔡利辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期390-396,共7页
Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the an... Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the anti-oxidation mechanism of Y2Si2O7 coating were investigated. Y2Si2O7 can be synthesized by the pyrolysis of Y2O3 powder filled silicone resin at mass ratio of 54.2:45.8 and 800 °C in air and then heat treated at 1400 °C under Ar. The as-fabricated coating shows high density and favorable bonding to C/SiC composites. After oxidation in air at 1400, 1500 and 1600 °C for 30 min, the coating-containing composites possess 130%-140% of original flexural strength. The desirable thermal stability and the further densification of coating during oxidation are responsible for the excellent oxidation resistance. In addition, the formation of eutectic Y-Si-Al-O glassy phase between Y2Si2O7 and Al2O3 sample bracket at 1500 °C is discovered. 展开更多
关键词 c/Sic composites yttrium silicate cOATING oxidation resistance
下载PDF
Fracture mechanism of 2D-C/C composites with pure smooth laminar pyrocarbon matrix under flexural loading
18
作者 曹伟锋 李贺军 +3 位作者 郭领军 张守阳 李克智 邓海亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2141-2146,共6页
Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PL... Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PLM) and scanning electron microscope (SEM), and the flexural behaviors before and after heat-treatment were studied with a universal mechanical testing machine. The fracture mechanism of the composites was discussed in detail. The results show that, carbon matrix exhibits pure smooth laminar (SL) characteristic including numerous wrinkled layered structures and some inter-laminar micro-cracks. With the decreasing density, the strength of the composites decreases and the toughness increases slightly; after 2500 °C heat-treatment, the inter-laminar micro-cracks in matrix increase, the strength decreases, and the toughness obviously increases. The fracture mode of the composites changes from brittle to pseudo-plastic characteristic due to more crack deflections in SL matrix. 展开更多
关键词 c/c composites PYROcARBON FRAcTURE flexural behavior
下载PDF
Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance 被引量:2
19
作者 Lixue Gai Yahui Wang +5 位作者 Pan Wan Shuping Yu Yongzheng Chen Xijiang Han Ping Xu Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期128-146,共19页
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M... Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications. 展开更多
关键词 Sic/c composites compositional engineering Hollow engineering Microwave absorption Environmental tolerance
下载PDF
Effects of heat treatment on phase contents and mechanical properties of infiltrated B_4C/2024Al composites 被引量:4
20
作者 谭孝芬 曾凡浩 +2 位作者 王抒秋 周飞 熊翔 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2359-2365,共7页
The B4C/2024Al composites were successfully produced by pressureless infiltration method, and the effects of heat treatment on phase content and mechanical properties were investigated by X-ray diffraction (XRD), sc... The B4C/2024Al composites were successfully produced by pressureless infiltration method, and the effects of heat treatment on phase content and mechanical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical properties testing. The results show that phases of BnC/2024Al composites include B4C, Al, Al3BC, AlB2 and Al2Cu. The phase species remain unchanged; however, the phase content of the composites changes significantly after heat treatment at the temperature of 660, 700, 800 or 900 ℃ for 12, 24 or 36 h. It is found that the heat treatment results in not only considerable enhancement in hardness, but also reduction in bending strength of the composites. Heat treatment at 800 ℃ for 36 h does best to hardness of the composites, while at 700 ℃ for 36 h it is the most beneficial to their comprehensive mechanical properties. 展开更多
关键词 B4c/2024Al composites heat treatment pressureless infiltration HARDNESS bending strength
下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部