In this paper, we study the Cauchy problem for the modified Camassa-Holm equation mt + umx + 2ux m = 0, m =(1- δx^2)^2u,u(x, 0) = u0(x) ∈ H^s(R), x ∈ R, t 〉 0,and show that the solution map is not unifor...In this paper, we study the Cauchy problem for the modified Camassa-Holm equation mt + umx + 2ux m = 0, m =(1- δx^2)^2u,u(x, 0) = u0(x) ∈ H^s(R), x ∈ R, t 〉 0,and show that the solution map is not uniformly continuous in Sobolev spaces H^s(R) for s 〉 7/2. Compared with the periodic problem, the non-periodic problem is more difficult,e.g., it depends on the conservation law. Our proof is based on the estimates for the actual solutions and the approximate solutions, which consist of a low frequency and a high frequency part.展开更多
This paper extracts some analytical solutions of simplified modified Camassa-Holm(SMCH)equations with various derivative operators,namely conformable and M-truncated derivatives that have been recently introduced.The ...This paper extracts some analytical solutions of simplified modified Camassa-Holm(SMCH)equations with various derivative operators,namely conformable and M-truncated derivatives that have been recently introduced.The SMCH equation is used to model the unidirectional propagation of shallowwater waves.The extended rational sine−cosine and sinh−cosh techniques have been successfully implemented to the considered equations and some kinds of the solitons such as kink and singular have been derived.We have checked that all obtained solutions satisfy the main equations by using a computer algebraic system.Furthermore,some 2D and 3D graphical illustrations of the obtained solutions have been presented.The effect of the parameters in the solutions on the wave propagation has been examined and all figures have been interpreted.The derived solutions may contribute to comprehending wave propagation in shallow water.So,the solutions might help further studies in the development of autonomous ships/underwater vehicles and coastal zone management,which are critical topics in the ocean and coastal engineering.展开更多
Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro...Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.展开更多
This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Un...This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.展开更多
This paper is devoted to constructing a globally rough solution for the higher order modified Camassa-Holm equation with randomization on initial data and periodic boundary condition.Motivated by the works of Thomann ...This paper is devoted to constructing a globally rough solution for the higher order modified Camassa-Holm equation with randomization on initial data and periodic boundary condition.Motivated by the works of Thomann and Tzvetkov(Nonlinearity,23(2010),2771–2791),Tzvetkov(Probab.Theory Relat.Fields,146(2010),4679–4714),Burq,Thomann and Tzvetkov(Ann.Fac.Sci.Toulouse Math.,27(2018),527–597),the authors first construct the Borel measure of Gibbs type in the Sobolev spaces with lower regularity,and then establish the existence of global solution to the equation with the helps of Prokhorov compactness theorem,Skorokhod convergence theorem and Gibbs measure.展开更多
The time-fractional modified Korteweg-de Vries(KdV)equation is committed to establish exact solutions by employing the bifurcation method.Firstly,the phase portraits and related qualitative analysis are comprehensivel...The time-fractional modified Korteweg-de Vries(KdV)equation is committed to establish exact solutions by employing the bifurcation method.Firstly,the phase portraits and related qualitative analysis are comprehensively provided.Then,we give parametric expressions of different types of solutions matching with the corresponding orbits.Finally,solution profiles,3D and density plots of some solutions are presented with proper parametric choices.展开更多
We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localiz...We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.展开更多
In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,br...In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,bright solitons and combined dark-bright solitons,travelling wave and periodic wave solutions with general coefficients.In our knowledge earlier reported results of the KE equation with specific coefficients.These obtained solutions are more useful in the development of optical fibers,dynamics of solitons,dynamics of adiabatic parameters,dynamics of fluid,problems of biomedical,industrial phenomena and many other branches.All calculations show that this technique is more powerful,effective,straightforward,and fruitfulness to study analytically other higher-order nonlinear complex PDEs involves in mathematical physics,quantum physics,Geo physics,fluid mechanics,hydrodynamics,mathematical biology,field of engineering and many other physical sciences.展开更多
The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann cond...The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme.展开更多
In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 eq...In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 equation, Joseph-Egri (TRLW) equation, and Calogro-Degasperis (CD) equation. As a result, we have obtained solutions for the equations expressed in terms of trigonometric, hyperbolic and rational functions. Moreover, some selected solutions are plotted using some specific values for the parameters.展开更多
Some two-component extensions of the modifiedμ-Camassa-Holm equation are proposed.We show that these systems admit Lax pairs and bi-Hamiltonian structures.Furthermore,we consider the blow-up phenomena for one of thes...Some two-component extensions of the modifiedμ-Camassa-Holm equation are proposed.We show that these systems admit Lax pairs and bi-Hamiltonian structures.Furthermore,we consider the blow-up phenomena for one of these extensions(2μmCH),and the periodic peakons of this system are derived.展开更多
In this letter, variational homotopy perturbation method (VHPM) has been studied to obtain solitary wave solutions of modified Camassa-Holm and Degasperis-Procesi equations. The results show that the VHPM is suitable ...In this letter, variational homotopy perturbation method (VHPM) has been studied to obtain solitary wave solutions of modified Camassa-Holm and Degasperis-Procesi equations. The results show that the VHPM is suitable for solving nonlinear differential equations with fully nonlinear dispersion term. The travelling wave solution for above equation compared with VIM, HPM, and exact solution. Also, it was shown that the present method is effective, suitable, and reliable for these types of equations.展开更多
This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this g...This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.展开更多
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e...In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes.展开更多
In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o...In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.展开更多
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperature...In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.展开更多
We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form ...We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.展开更多
An extended Jacobian elliptic function expansion method presented recently by us is applied to the mKdVequation such that thirteen families of Jacobian elliptic function solutions including both new solutions and Fu...An extended Jacobian elliptic function expansion method presented recently by us is applied to the mKdVequation such that thirteen families of Jacobian elliptic function solutions including both new solutions and Fu's allresults are obtained. When the modulus m → 1 or 0, we can find the corresponding six solitary wave solutions and sixtrigonometric function solutions. This shows that our method is more powerful to construct more exact Jacobian ellipticfunction solutions and can be applied to other nonlinear differential equations.展开更多
Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in de...Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in dealing with the nonlinear waves in practice. In this paper, a modified form of mild-slope equation with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation. The modified form of mild-slope equation is convenient to solve nonlinear effect of waves. The model is tested against the laboratory measurement for the case of a submerged elliptical shoal on a slope beach given by Berkhoff et al. The present numerical results are also compared with those obtained through linear wave theory. Better agreement is obtained as the modified mild-slope equation is employed. And the modified mild-slope equation can reasonably simulate the weakly nonlinear effect of wave propagation from deep water to coast.展开更多
基金supported by the National Natural Science Foundation of China(11226159)
文摘In this paper, we study the Cauchy problem for the modified Camassa-Holm equation mt + umx + 2ux m = 0, m =(1- δx^2)^2u,u(x, 0) = u0(x) ∈ H^s(R), x ∈ R, t 〉 0,and show that the solution map is not uniformly continuous in Sobolev spaces H^s(R) for s 〉 7/2. Compared with the periodic problem, the non-periodic problem is more difficult,e.g., it depends on the conservation law. Our proof is based on the estimates for the actual solutions and the approximate solutions, which consist of a low frequency and a high frequency part.
基金Scientific and Technological Research Council of Turkey(TUBITAK)for the finan-cial support of the 2211-A Fellowship Program.
文摘This paper extracts some analytical solutions of simplified modified Camassa-Holm(SMCH)equations with various derivative operators,namely conformable and M-truncated derivatives that have been recently introduced.The SMCH equation is used to model the unidirectional propagation of shallowwater waves.The extended rational sine−cosine and sinh−cosh techniques have been successfully implemented to the considered equations and some kinds of the solitons such as kink and singular have been derived.We have checked that all obtained solutions satisfy the main equations by using a computer algebraic system.Furthermore,some 2D and 3D graphical illustrations of the obtained solutions have been presented.The effect of the parameters in the solutions on the wave propagation has been examined and all figures have been interpreted.The derived solutions may contribute to comprehending wave propagation in shallow water.So,the solutions might help further studies in the development of autonomous ships/underwater vehicles and coastal zone management,which are critical topics in the ocean and coastal engineering.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036)+2 种基金the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426)the Talent Development Fund of Inner Mongolia Autonomous Region, China。
文摘Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
文摘This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.
基金supported by the National Natural Science Foundation of China(Nos.11901302,11401180)the Natural Science Foundation from Jiangsu province BK20171029the Academic Discipline Project of Shanghai Dianji University(No.16JCXK02)。
文摘This paper is devoted to constructing a globally rough solution for the higher order modified Camassa-Holm equation with randomization on initial data and periodic boundary condition.Motivated by the works of Thomann and Tzvetkov(Nonlinearity,23(2010),2771–2791),Tzvetkov(Probab.Theory Relat.Fields,146(2010),4679–4714),Burq,Thomann and Tzvetkov(Ann.Fac.Sci.Toulouse Math.,27(2018),527–597),the authors first construct the Borel measure of Gibbs type in the Sobolev spaces with lower regularity,and then establish the existence of global solution to the equation with the helps of Prokhorov compactness theorem,Skorokhod convergence theorem and Gibbs measure.
基金Project supported by the Natural Science Foundation of Shandong Province (Grant No.ZR2021MA084)the Natural Science Foundation of Liaocheng University (Grant No.318012025)Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology (Grant No.319462208)。
文摘The time-fractional modified Korteweg-de Vries(KdV)equation is committed to establish exact solutions by employing the bifurcation method.Firstly,the phase portraits and related qualitative analysis are comprehensively provided.Then,we give parametric expressions of different types of solutions matching with the corresponding orbits.Finally,solution profiles,3D and density plots of some solutions are presented with proper parametric choices.
基金the National Natural Science Foundation of China(Grant Nos.11871232 and 12201578)Natural Science Foundation of Henan Province,China(Grant Nos.222300420377 and 212300410417)。
文摘We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.
文摘In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,bright solitons and combined dark-bright solitons,travelling wave and periodic wave solutions with general coefficients.In our knowledge earlier reported results of the KE equation with specific coefficients.These obtained solutions are more useful in the development of optical fibers,dynamics of solitons,dynamics of adiabatic parameters,dynamics of fluid,problems of biomedical,industrial phenomena and many other branches.All calculations show that this technique is more powerful,effective,straightforward,and fruitfulness to study analytically other higher-order nonlinear complex PDEs involves in mathematical physics,quantum physics,Geo physics,fluid mechanics,hydrodynamics,mathematical biology,field of engineering and many other physical sciences.
文摘The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme.
文摘In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 equation, Joseph-Egri (TRLW) equation, and Calogro-Degasperis (CD) equation. As a result, we have obtained solutions for the equations expressed in terms of trigonometric, hyperbolic and rational functions. Moreover, some selected solutions are plotted using some specific values for the parameters.
基金the National Nature Science Foundation of China(Grant Nos.11871471,11931017)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2019L0531)+1 种基金Shanxi Province Science Foundation for Youths(Grant No.201901D211274)the Fund for Shanxi‘1331KIRT’。
文摘Some two-component extensions of the modifiedμ-Camassa-Holm equation are proposed.We show that these systems admit Lax pairs and bi-Hamiltonian structures.Furthermore,we consider the blow-up phenomena for one of these extensions(2μmCH),and the periodic peakons of this system are derived.
文摘In this letter, variational homotopy perturbation method (VHPM) has been studied to obtain solitary wave solutions of modified Camassa-Holm and Degasperis-Procesi equations. The results show that the VHPM is suitable for solving nonlinear differential equations with fully nonlinear dispersion term. The travelling wave solution for above equation compared with VIM, HPM, and exact solution. Also, it was shown that the present method is effective, suitable, and reliable for these types of equations.
基金funded by the National Natural Science Foundation of China (Grant No. 11975145)
文摘This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.
基金supported by the NSF under Grant DMS-1818467Simons Foundation under Grant 961585.
文摘In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes.
文摘In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
基金Project(51275414)supported by the National Natural Science Foundation of ChinaProject(2015JM5204)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(Z2015064)supported by the Graduate Starting Seed Fund of the Northwestern Polytechnical University,ChinaProject(130-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.
文摘We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.
文摘An extended Jacobian elliptic function expansion method presented recently by us is applied to the mKdVequation such that thirteen families of Jacobian elliptic function solutions including both new solutions and Fu's allresults are obtained. When the modulus m → 1 or 0, we can find the corresponding six solitary wave solutions and sixtrigonometric function solutions. This shows that our method is more powerful to construct more exact Jacobian ellipticfunction solutions and can be applied to other nonlinear differential equations.
文摘Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in dealing with the nonlinear waves in practice. In this paper, a modified form of mild-slope equation with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation. The modified form of mild-slope equation is convenient to solve nonlinear effect of waves. The model is tested against the laboratory measurement for the case of a submerged elliptical shoal on a slope beach given by Berkhoff et al. The present numerical results are also compared with those obtained through linear wave theory. Better agreement is obtained as the modified mild-slope equation is employed. And the modified mild-slope equation can reasonably simulate the weakly nonlinear effect of wave propagation from deep water to coast.