In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary condit...In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.展开更多
There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle th...There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.展开更多
This research aims to analyze the static bending and free vibration behaviors of bidirectional functionally graded porous(BFGP)curved microbeams with elastic boundary conditions resting on a Pasternak’s elastic found...This research aims to analyze the static bending and free vibration behaviors of bidirectional functionally graded porous(BFGP)curved microbeams with elastic boundary conditions resting on a Pasternak’s elastic foundation in a hygro-thermal environment.Isogeometric analysis based on non-uniform rational B-splines,first-order shear deformation theory,nonlocal elasticity theory combined with the modified strain gradient theories,modified Timoshenko beam theory are formulated to depict bending and shear deformations of BFGP curved microbeams.Especially,because using the modified Timoshenko beam theory,this study removes the requirement for a shear correction factor and describes shear stress by zero at the upper and lower cross-sectional sites of the BFGP curved microbeam.Different from traditional boundary conditions,where the beginning and end positions of a curved beam are connected by an elastic system of straight and torsion springs.This allows for greater flexibility in controlling the stiffness of the springs to obtain arbitrary boundaries.To assess the accuracy and convergence of the proposed approach,validation numerical examples were conducted in the various examples.展开更多
In this study,through experimental research and an investigation on large datasets of the durability parameters in ocean engineering,the values,ranges,and types of distribution of the durability parameters employed fo...In this study,through experimental research and an investigation on large datasets of the durability parameters in ocean engineering,the values,ranges,and types of distribution of the durability parameters employed for the durability design in ocean engineering in northern China were confirmed.Based on a modified theoretical model of chloride diffusion and the reliability theory,the service lives of concrete structures exposed to the splash,tidal,and underwater zones were calculated.Mixed concrete proportions meeting the requirement of a service life of 100 or 120 years were designed,and a cover thickness requirement was proposed.In addition,the effects of the different time-varying relationships of the boundary condition(Cs)and diffusion coefficient(Df)on the service life were compared;the results showed that the time-varying relationships used in this study(i.e.,Cscontinuously increased and then remained stable,and Dfcontinuously decreased and then remained stable)were beneficial for the durability design of concrete structures in marine environment.展开更多
An algorithm composed of an iterative modified approximate factorization(MAF(k)) method with Navier-Stokes characteristic boundary conditions(NSCBC) is proposed for solving subsonic viscous flows.A transformation on t...An algorithm composed of an iterative modified approximate factorization(MAF(k)) method with Navier-Stokes characteristic boundary conditions(NSCBC) is proposed for solving subsonic viscous flows.A transformation on the matrix equation in MAF(k) is made in order to impose the implicit boundary conditions properly.To be in consistent with the implicit solver for the interior domain,an implicit scheme for NSCBC is formulated.The performance of the developed algorithm is investigated using spatially evolving zero pressure gradient boundary layer over a flat plate and a wall jet mixing with a cross flow over a flat plate with a square hole as the test cases.The numerical results are compared to the existing experimental datasets and a number of general correlations,together with other available numerical solutions,which demonstrate that the developed algorithm possesses promising capacity for simulating the subsonic viscous flows with large CFL number.展开更多
The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduct...The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector.展开更多
A quasi-three dimensional model is proposed for the vibration analysis of functionally graded(FG)micro-beams with general boundary conditions based on the modified strain gradient theory.To consider the effects of tra...A quasi-three dimensional model is proposed for the vibration analysis of functionally graded(FG)micro-beams with general boundary conditions based on the modified strain gradient theory.To consider the effects of transverse shear and nor-mal deformations,a general displacement field is achieved by relaxing the assumption of the constant transverse displacement through the thickness.The conventional beam theories including the classical beam theory,the first-order beam theory,and the higher-order beam theory are regarded as the special cases of this model.The material proper-ties changing gradually along the thickness direction are calculated by the Mori-Tanaka scheme.The energy-based formulation is derived by a variational method integrated with the penalty function method,where the Chebyshev orthogonal polynomials are used as the basis function of the displacement variables.The formulation is validated by some comparative examples,and then the parametric studies are conducted to investigate the effects of transverse shear and normal deformations on vibration behaviors.展开更多
文摘In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.
文摘There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.
文摘This research aims to analyze the static bending and free vibration behaviors of bidirectional functionally graded porous(BFGP)curved microbeams with elastic boundary conditions resting on a Pasternak’s elastic foundation in a hygro-thermal environment.Isogeometric analysis based on non-uniform rational B-splines,first-order shear deformation theory,nonlocal elasticity theory combined with the modified strain gradient theories,modified Timoshenko beam theory are formulated to depict bending and shear deformations of BFGP curved microbeams.Especially,because using the modified Timoshenko beam theory,this study removes the requirement for a shear correction factor and describes shear stress by zero at the upper and lower cross-sectional sites of the BFGP curved microbeam.Different from traditional boundary conditions,where the beginning and end positions of a curved beam are connected by an elastic system of straight and torsion springs.This allows for greater flexibility in controlling the stiffness of the springs to obtain arbitrary boundaries.To assess the accuracy and convergence of the proposed approach,validation numerical examples were conducted in the various examples.
基金financial support provided by the National Natural Science Foundation of China(51508272,11832013,51878350,and 51678304)。
文摘In this study,through experimental research and an investigation on large datasets of the durability parameters in ocean engineering,the values,ranges,and types of distribution of the durability parameters employed for the durability design in ocean engineering in northern China were confirmed.Based on a modified theoretical model of chloride diffusion and the reliability theory,the service lives of concrete structures exposed to the splash,tidal,and underwater zones were calculated.Mixed concrete proportions meeting the requirement of a service life of 100 or 120 years were designed,and a cover thickness requirement was proposed.In addition,the effects of the different time-varying relationships of the boundary condition(Cs)and diffusion coefficient(Df)on the service life were compared;the results showed that the time-varying relationships used in this study(i.e.,Cscontinuously increased and then remained stable,and Dfcontinuously decreased and then remained stable)were beneficial for the durability design of concrete structures in marine environment.
文摘An algorithm composed of an iterative modified approximate factorization(MAF(k)) method with Navier-Stokes characteristic boundary conditions(NSCBC) is proposed for solving subsonic viscous flows.A transformation on the matrix equation in MAF(k) is made in order to impose the implicit boundary conditions properly.To be in consistent with the implicit solver for the interior domain,an implicit scheme for NSCBC is formulated.The performance of the developed algorithm is investigated using spatially evolving zero pressure gradient boundary layer over a flat plate and a wall jet mixing with a cross flow over a flat plate with a square hole as the test cases.The numerical results are compared to the existing experimental datasets and a number of general correlations,together with other available numerical solutions,which demonstrate that the developed algorithm possesses promising capacity for simulating the subsonic viscous flows with large CFL number.
文摘The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector.
基金Project supported by the National Natural Science Foundation of China(Nos.51805250 and 11602145)the Natural Science Foundation of Jiangsu Province of China(No.BK20180429)+1 种基金the China Postdoctoral Science Foundation(No.2019M660114)the Jiangsu Planned Projects for Postdoctoral Research Funds of China(No.2019K054)。
文摘A quasi-three dimensional model is proposed for the vibration analysis of functionally graded(FG)micro-beams with general boundary conditions based on the modified strain gradient theory.To consider the effects of transverse shear and nor-mal deformations,a general displacement field is achieved by relaxing the assumption of the constant transverse displacement through the thickness.The conventional beam theories including the classical beam theory,the first-order beam theory,and the higher-order beam theory are regarded as the special cases of this model.The material proper-ties changing gradually along the thickness direction are calculated by the Mori-Tanaka scheme.The energy-based formulation is derived by a variational method integrated with the penalty function method,where the Chebyshev orthogonal polynomials are used as the basis function of the displacement variables.The formulation is validated by some comparative examples,and then the parametric studies are conducted to investigate the effects of transverse shear and normal deformations on vibration behaviors.