Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the eff...Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the effective nuclear force potential, and theoretical considerations and experimental evidence hint to the hypothesis that Gravity originates from such an interaction, under an averaging process over spin directions. This invites to continue the line of theory initiated by Einstein and Cartan, based on tetrads and spin effects modeled by connections with torsion. As a first step in this direction, the article considers a new modified Coulomb/Newton Law accounting for the spin-spin interaction. The physical potential is geometrized through specific affine connections and specific semi-Riemannian metrics, canonically associated to it, acting on a manifold or at the level of its tangent bundle. Freely falling particles in these “toy Universes” are determined, showing an interesting behavior and unexpected patterns.展开更多
The triaxial strength of twenty rockmass types was predicted using two non-linear triaxial strength criteria for rockmass i.e. Modified Mohr-Coulomb(MMC) criterion and Generalized Hoek-Brown(GHB)criterion. Four differ...The triaxial strength of twenty rockmass types was predicted using two non-linear triaxial strength criteria for rockmass i.e. Modified Mohr-Coulomb(MMC) criterion and Generalized Hoek-Brown(GHB)criterion. Four different rockmass classification systems were used for the calculation of MMC criterion parameters while only GSI classification system has been used for calculation of GHB parameters. The representative value of the uniaxial compressive strength and elastic modulus of rockmass have been estimated using probabilistic approach. A hypothetical case of an unsupported tunnel has been analyzed considering both MMC and GHB criteria. The analysis was done using the convergence-confinement method with two different approaches. The first approach predicts the tunnel response using GHB criterion directly. The second approach predicts the tunnel response using equivalent Mohr-Coulomb parameters obtained by linearization of triaxial data points obtained from MMC and GHB criteria. The tunnel response has been estimated in terms of radius of plastic zone, tunnel convergence and tunnel convergence strain. For very poor rockmasses the tunnel response predicted by MMC criterion is less than that predicted by GHB criterion. For poor and fair rockmass, the tunnel response estimated considering both the criteria are comparable except for few cases. Squeezing condition in rockmass has been also evaluated.展开更多
文摘Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the effective nuclear force potential, and theoretical considerations and experimental evidence hint to the hypothesis that Gravity originates from such an interaction, under an averaging process over spin directions. This invites to continue the line of theory initiated by Einstein and Cartan, based on tetrads and spin effects modeled by connections with torsion. As a first step in this direction, the article considers a new modified Coulomb/Newton Law accounting for the spin-spin interaction. The physical potential is geometrized through specific affine connections and specific semi-Riemannian metrics, canonically associated to it, acting on a manifold or at the level of its tangent bundle. Freely falling particles in these “toy Universes” are determined, showing an interesting behavior and unexpected patterns.
文摘The triaxial strength of twenty rockmass types was predicted using two non-linear triaxial strength criteria for rockmass i.e. Modified Mohr-Coulomb(MMC) criterion and Generalized Hoek-Brown(GHB)criterion. Four different rockmass classification systems were used for the calculation of MMC criterion parameters while only GSI classification system has been used for calculation of GHB parameters. The representative value of the uniaxial compressive strength and elastic modulus of rockmass have been estimated using probabilistic approach. A hypothetical case of an unsupported tunnel has been analyzed considering both MMC and GHB criteria. The analysis was done using the convergence-confinement method with two different approaches. The first approach predicts the tunnel response using GHB criterion directly. The second approach predicts the tunnel response using equivalent Mohr-Coulomb parameters obtained by linearization of triaxial data points obtained from MMC and GHB criteria. The tunnel response has been estimated in terms of radius of plastic zone, tunnel convergence and tunnel convergence strain. For very poor rockmasses the tunnel response predicted by MMC criterion is less than that predicted by GHB criterion. For poor and fair rockmass, the tunnel response estimated considering both the criteria are comparable except for few cases. Squeezing condition in rockmass has been also evaluated.