Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro...Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.展开更多
This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Un...This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.展开更多
This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this g...This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.展开更多
The time-fractional modified Korteweg-de Vries(KdV)equation is committed to establish exact solutions by employing the bifurcation method.Firstly,the phase portraits and related qualitative analysis are comprehensivel...The time-fractional modified Korteweg-de Vries(KdV)equation is committed to establish exact solutions by employing the bifurcation method.Firstly,the phase portraits and related qualitative analysis are comprehensively provided.Then,we give parametric expressions of different types of solutions matching with the corresponding orbits.Finally,solution profiles,3D and density plots of some solutions are presented with proper parametric choices.展开更多
We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localiz...We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.展开更多
In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,br...In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,bright solitons and combined dark-bright solitons,travelling wave and periodic wave solutions with general coefficients.In our knowledge earlier reported results of the KE equation with specific coefficients.These obtained solutions are more useful in the development of optical fibers,dynamics of solitons,dynamics of adiabatic parameters,dynamics of fluid,problems of biomedical,industrial phenomena and many other branches.All calculations show that this technique is more powerful,effective,straightforward,and fruitfulness to study analytically other higher-order nonlinear complex PDEs involves in mathematical physics,quantum physics,Geo physics,fluid mechanics,hydrodynamics,mathematical biology,field of engineering and many other physical sciences.展开更多
The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann cond...The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme.展开更多
In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 eq...In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 equation, Joseph-Egri (TRLW) equation, and Calogro-Degasperis (CD) equation. As a result, we have obtained solutions for the equations expressed in terms of trigonometric, hyperbolic and rational functions. Moreover, some selected solutions are plotted using some specific values for the parameters.展开更多
The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plo...The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.展开更多
In this paper, we study the Cauchy problem for the modified Camassa-Holm equation mt + umx + 2ux m = 0, m =(1- δx^2)^2u,u(x, 0) = u0(x) ∈ H^s(R), x ∈ R, t 〉 0,and show that the solution map is not unifor...In this paper, we study the Cauchy problem for the modified Camassa-Holm equation mt + umx + 2ux m = 0, m =(1- δx^2)^2u,u(x, 0) = u0(x) ∈ H^s(R), x ∈ R, t 〉 0,and show that the solution map is not uniformly continuous in Sobolev spaces H^s(R) for s 〉 7/2. Compared with the periodic problem, the non-periodic problem is more difficult,e.g., it depends on the conservation law. Our proof is based on the estimates for the actual solutions and the approximate solutions, which consist of a low frequency and a high frequency part.展开更多
Employing the Pekeris-type approximation to deal with the pseudo-centrifugal term,we analytically study the pseudospin symmetry of a Dirac nucleon subjected to equal scalar and vector modified Rosen-Morse potential in...Employing the Pekeris-type approximation to deal with the pseudo-centrifugal term,we analytically study the pseudospin symmetry of a Dirac nucleon subjected to equal scalar and vector modified Rosen-Morse potential including the spin-orbit coupling term by using the Nikiforov-Uvarov method and supersymmetric quantum mechanics approach.The complex eigenvalue equation and the total normalized wave functions expressed in terms of Jacobi polynomial with arbitrary spin-orbit coupling quantum number k are presented under the condition of pseudospin symmetry.The eigenvalue equations for both methods reproduce the same result to affirm the mathematical accuracy of analytical calculations.The numerical solutions obtained for different adjustable parameters produce degeneracies for some quantum number.展开更多
This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergenc...This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergence theorem is established. Numerical results indicate the effectiveness and accuracy of the method.展开更多
New two-component vector breather solution of the modified Benjamin-Bona-Mahony(MBBM)equation is considered.Using the generalized perturbation reduction method,the MBBM equation is reduced to the coupled nonlinear Sch...New two-component vector breather solution of the modified Benjamin-Bona-Mahony(MBBM)equation is considered.Using the generalized perturbation reduction method,the MBBM equation is reduced to the coupled nonlinear Schr¨odinger equations for auxiliary functions.Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented.The two-component vector breather and single-component scalar breather of the MBBM equation is compared.展开更多
In this work, we use the Bogning-Djeumen Tchaho-Kofané method to look for all solutions of shape Sechn- of the modified KdV and Born-Infeld Equations. n being a real number, we obtain the soliton solutions when n...In this work, we use the Bogning-Djeumen Tchaho-Kofané method to look for all solutions of shape Sechn- of the modified KdV and Born-Infeld Equations. n being a real number, we obtain the soliton solutions when n is positive and the non soliton solutions when n is negative.展开更多
In this paper the Modified Equations of Emden type (MEE), χ+αχχ+βχ 3 is solved numerically by the differential transform method. This technique doesn’t require any discretization, linearization or small perturb...In this paper the Modified Equations of Emden type (MEE), χ+αχχ+βχ 3 is solved numerically by the differential transform method. This technique doesn’t require any discretization, linearization or small perturbations and therefore it reduces significantly the numerical computation. The current results of this paper are in excellent agreement with those provided by Chandrasekar et al. [1] and thereby illustrate the reliability and the performance of the differential transform method. We have also compared the results with the classical Runge-Kutta 4 (RK4) Method.展开更多
A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a s...A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
In this paper, the ansatze method is implemented to study the exact solutions for the modified Benjamin-Bona-Mahony equation (mBBM). The singular-shaped traveling wave solution, the Bell-shape is traveling wave soluti...In this paper, the ansatze method is implemented to study the exact solutions for the modified Benjamin-Bona-Mahony equation (mBBM). The singular-shaped traveling wave solution, the Bell-shape is traveling wave solution, the kink-shaped traveling wave solution and the periodic traveling wave solution is obtained. With the assist of computational software MATLAB, the graphical exemplifications of solutions are illustrated of the two-dimension (2D) and three-dimension (3D) plots.展开更多
For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grid...For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.展开更多
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e...In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036)+2 种基金the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426)the Talent Development Fund of Inner Mongolia Autonomous Region, China。
文摘Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
文摘This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.
基金funded by the National Natural Science Foundation of China (Grant No. 11975145)
文摘This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.
基金Project supported by the Natural Science Foundation of Shandong Province (Grant No.ZR2021MA084)the Natural Science Foundation of Liaocheng University (Grant No.318012025)Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology (Grant No.319462208)。
文摘The time-fractional modified Korteweg-de Vries(KdV)equation is committed to establish exact solutions by employing the bifurcation method.Firstly,the phase portraits and related qualitative analysis are comprehensively provided.Then,we give parametric expressions of different types of solutions matching with the corresponding orbits.Finally,solution profiles,3D and density plots of some solutions are presented with proper parametric choices.
基金the National Natural Science Foundation of China(Grant Nos.11871232 and 12201578)Natural Science Foundation of Henan Province,China(Grant Nos.222300420377 and 212300410417)。
文摘We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.
文摘In this research work,we constructed the optical soliton solutions of nonlinear complex Kundu-Eckhaus(KE)equation with the help of modified mathematical method.We obtained the solutions in the form of dark solitons,bright solitons and combined dark-bright solitons,travelling wave and periodic wave solutions with general coefficients.In our knowledge earlier reported results of the KE equation with specific coefficients.These obtained solutions are more useful in the development of optical fibers,dynamics of solitons,dynamics of adiabatic parameters,dynamics of fluid,problems of biomedical,industrial phenomena and many other branches.All calculations show that this technique is more powerful,effective,straightforward,and fruitfulness to study analytically other higher-order nonlinear complex PDEs involves in mathematical physics,quantum physics,Geo physics,fluid mechanics,hydrodynamics,mathematical biology,field of engineering and many other physical sciences.
文摘The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme.
文摘In this study, we will introduce the modified (G'/G<sup>2</sup>)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 equation, Joseph-Egri (TRLW) equation, and Calogro-Degasperis (CD) equation. As a result, we have obtained solutions for the equations expressed in terms of trigonometric, hyperbolic and rational functions. Moreover, some selected solutions are plotted using some specific values for the parameters.
基金funded by the National Natural Science Foundation of China(91025015,51178209)the Project of Arid Meteorological Science Research Foundation of China Meteorological Administration(IAM201608)
文摘The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.
基金supported by the National Natural Science Foundation of China(11226159)
文摘In this paper, we study the Cauchy problem for the modified Camassa-Holm equation mt + umx + 2ux m = 0, m =(1- δx^2)^2u,u(x, 0) = u0(x) ∈ H^s(R), x ∈ R, t 〉 0,and show that the solution map is not uniformly continuous in Sobolev spaces H^s(R) for s 〉 7/2. Compared with the periodic problem, the non-periodic problem is more difficult,e.g., it depends on the conservation law. Our proof is based on the estimates for the actual solutions and the approximate solutions, which consist of a low frequency and a high frequency part.
文摘Employing the Pekeris-type approximation to deal with the pseudo-centrifugal term,we analytically study the pseudospin symmetry of a Dirac nucleon subjected to equal scalar and vector modified Rosen-Morse potential including the spin-orbit coupling term by using the Nikiforov-Uvarov method and supersymmetric quantum mechanics approach.The complex eigenvalue equation and the total normalized wave functions expressed in terms of Jacobi polynomial with arbitrary spin-orbit coupling quantum number k are presented under the condition of pseudospin symmetry.The eigenvalue equations for both methods reproduce the same result to affirm the mathematical accuracy of analytical calculations.The numerical solutions obtained for different adjustable parameters produce degeneracies for some quantum number.
文摘This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergence theorem is established. Numerical results indicate the effectiveness and accuracy of the method.
文摘New two-component vector breather solution of the modified Benjamin-Bona-Mahony(MBBM)equation is considered.Using the generalized perturbation reduction method,the MBBM equation is reduced to the coupled nonlinear Schr¨odinger equations for auxiliary functions.Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented.The two-component vector breather and single-component scalar breather of the MBBM equation is compared.
文摘In this work, we use the Bogning-Djeumen Tchaho-Kofané method to look for all solutions of shape Sechn- of the modified KdV and Born-Infeld Equations. n being a real number, we obtain the soliton solutions when n is positive and the non soliton solutions when n is negative.
文摘In this paper the Modified Equations of Emden type (MEE), χ+αχχ+βχ 3 is solved numerically by the differential transform method. This technique doesn’t require any discretization, linearization or small perturbations and therefore it reduces significantly the numerical computation. The current results of this paper are in excellent agreement with those provided by Chandrasekar et al. [1] and thereby illustrate the reliability and the performance of the differential transform method. We have also compared the results with the classical Runge-Kutta 4 (RK4) Method.
文摘A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
文摘In this paper, the ansatze method is implemented to study the exact solutions for the modified Benjamin-Bona-Mahony equation (mBBM). The singular-shaped traveling wave solution, the Bell-shape is traveling wave solution, the kink-shaped traveling wave solution and the periodic traveling wave solution is obtained. With the assist of computational software MATLAB, the graphical exemplifications of solutions are illustrated of the two-dimension (2D) and three-dimension (3D) plots.
文摘For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.
基金supported by the NSF under Grant DMS-1818467Simons Foundation under Grant 961585.
文摘In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes.