A new decoupled two-gird algorithm with the Newton iteration is proposed for solving the coupled Navier-Stokes/Darcy model which describes a fluid flow filtrating through porous media. Moreover the error estimate is g...A new decoupled two-gird algorithm with the Newton iteration is proposed for solving the coupled Navier-Stokes/Darcy model which describes a fluid flow filtrating through porous media. Moreover the error estimate is given, which shows that the same order of accuracy can be achieved as solving the system directly in the fine mesh when h = H2. Both theoretical analysis and numerical experiments illustrate the efficiency of the algorithm for solving the coupled problem.展开更多
Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the eff...Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the effective nuclear force potential, and theoretical considerations and experimental evidence hint to the hypothesis that Gravity originates from such an interaction, under an averaging process over spin directions. This invites to continue the line of theory initiated by Einstein and Cartan, based on tetrads and spin effects modeled by connections with torsion. As a first step in this direction, the article considers a new modified Coulomb/Newton Law accounting for the spin-spin interaction. The physical potential is geometrized through specific affine connections and specific semi-Riemannian metrics, canonically associated to it, acting on a manifold or at the level of its tangent bundle. Freely falling particles in these “toy Universes” are determined, showing an interesting behavior and unexpected patterns.展开更多
In this paper we discuss the convergence of a modified Newton’s method presented by A. Ostrowski [1] and J.F. Traub [2], which has quadratic convergence order but reduces one evaluation of the derivative at every two...In this paper we discuss the convergence of a modified Newton’s method presented by A. Ostrowski [1] and J.F. Traub [2], which has quadratic convergence order but reduces one evaluation of the derivative at every two steps compared with Newton’s method. A convergence theorem is established by using a weak condition a≤3-2(2<sup>1/2</sup>) and a sharp error estimate is given about the iterative sequence.展开更多
In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods ...In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency.展开更多
In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order...In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.展开更多
Assuming a Winterberg model for space where the vacuum consists of a very stiff two-component superfluid made up of positive and negative mass planckions, Q theory is the hypothesis, that Planck charge, <i>q<...Assuming a Winterberg model for space where the vacuum consists of a very stiff two-component superfluid made up of positive and negative mass planckions, Q theory is the hypothesis, that Planck charge, <i>q<sub>pl</sub></i>, was created at the same time as Planck mass. Moreover, the repulsive force that like-mass planckions experience is, in reality, due to the electrostatic force of repulsion between like charges. These forces also give rise to what appears to be a gravitational force of attraction between two like planckions, but this is an illusion. In reality, gravity is electrostatic in origin if our model is correct. We determine the spring constant associated with planckion masses, and find that, <img src="Edit_770c2a48-039c-4cc9-8f66-406c0cfc565c.png" width="90" height="15" alt="" />, where <i>ζ</i>(3) equals Apery’s constant, 1.202 …, and, <i>n</i><sub>+</sub>(0)=<i>n</i>_(0), is the relaxed, <i>i.e.</i>, <img src="Edit_813d5a6f-b79a-49ba-bdf7-5042541b58a0.png" width="25" height="12" alt="" />, number density of the positive and negative mass planckions. In the present epoch, we estimate that, <i>n</i><sub>+</sub>(0) equals, 7.848E54 m<sup>-3</sup>, and the relaxed distance of separation between nearest neighbor positive, or negative, planckion pairs is, <i>l</i><sub>+</sub>(0)=<i>l</i><sub>_</sub>(0)=5.032E-19 meters. These values were determined using box quantization for the positive and negative mass planckions, and considering transitions between energy states, much like as in the hydrogen atom. For the cosmos as a whole, given a net smeared macroscopic gravitational field of, <img src="Edit_efc8003d-5297-4345-adac-4ac95536934d.png" width="80" height="15" alt="" />, due to all the ordinary, and bound, matter contained within the observable universe, an average displacement from equilibrium for the planckion masses is a mere 7.566E-48 meters, within the vacuum made up of these particles. On the surface of the earth, where, <i>g</i>=9.81m/s<sup>2</sup>, the displacement amounts to, 7.824E-38 meters. All of these displacements are due to increased gravitational pressure within the vacuum, which in turn is caused by applied gravitational fields. The gravitational potential is also derived and directly related to gravitational pressure.展开更多
We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the numb...We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner iterations in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples that represent a wide range of typical systems.展开更多
Newton’s method is used to find the roots of a system of equations <span style="white-space:nowrap;"><em>f</em> (x) = 0</span>. It is one of the most important procedures in numerica...Newton’s method is used to find the roots of a system of equations <span style="white-space:nowrap;"><em>f</em> (x) = 0</span>. It is one of the most important procedures in numerical analysis, and its applicability extends to differential equations and integral equations. Analysis of the method shows a quadratic convergence under certain assumptions. For several years, researchers have improved the method by proposing modified Newton methods with salutary efforts. A modification of the Newton’s method was proposed by McDougall and Wotherspoon <a href="#ref1">[1]</a> with an order of convergence of <span style="white-space:nowrap;">1+ <span style="white-space:nowrap;">√2</span></span>. On a new type of methods with cubic convergence was proposed by H. H. H. Homeier <a href="#ref2">[2]</a>. In this article, we present a new modification of Newton method based on secant method. Analysis of convergence shows that the new method is cubically convergent. Our method requires an evaluation of the function and one of its derivatives.展开更多
In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574...In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. Per iteration in this method requires two evaluations of the function and two of its first derivatives;therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified this method and obtained a family of iterative methods for appropriate and suitable choice of the parameter. It should be noted that per iteration for the new methods requires two evaluations of the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. Analysis of convergence shows that the methods are fourth-order. Several numerical examples are given to illustrate the performance of the presented methods.展开更多
We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solv...We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.展开更多
针对S变换在电能质量扰动检测中存在计算量过大,时频分辨率低,电能质量扰动数据集常具备类别不平衡的问题,提出一种基于改进Kaiser窗快速S变换(modified Kaiser window fast S-transform,FMKST)和轻梯度提升机(light gradient boosting ...针对S变换在电能质量扰动检测中存在计算量过大,时频分辨率低,电能质量扰动数据集常具备类别不平衡的问题,提出一种基于改进Kaiser窗快速S变换(modified Kaiser window fast S-transform,FMKST)和轻梯度提升机(light gradient boosting machine,LightGBM)的电能质量扰动识别与分类新方法。首先通过快速傅里叶变换得到采样信号频谱;然后利用迭代循环滤波区间定位算法确定扰动频率区间;再根据扰动频率区间所处频段确定窗宽调节因子并对相应区间进行变换;最后从采样信号的FMKST模时频矩阵中提取特征向量并构建改进LightGBM分类器进行分类。仿真与实验结果表明,提出的方法具有更高的识别准确率与更快的诊断速度,适用于海量电能质量扰动数据的快速识别与分类。展开更多
基金supported by National Foundation of Natural Science(11471092,11326231)Zhejiang Provincial Natural Science Foundation of China(LZ13A010003)
文摘A new decoupled two-gird algorithm with the Newton iteration is proposed for solving the coupled Navier-Stokes/Darcy model which describes a fluid flow filtrating through porous media. Moreover the error estimate is given, which shows that the same order of accuracy can be achieved as solving the system directly in the fine mesh when h = H2. Both theoretical analysis and numerical experiments illustrate the efficiency of the algorithm for solving the coupled problem.
文摘Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the effective nuclear force potential, and theoretical considerations and experimental evidence hint to the hypothesis that Gravity originates from such an interaction, under an averaging process over spin directions. This invites to continue the line of theory initiated by Einstein and Cartan, based on tetrads and spin effects modeled by connections with torsion. As a first step in this direction, the article considers a new modified Coulomb/Newton Law accounting for the spin-spin interaction. The physical potential is geometrized through specific affine connections and specific semi-Riemannian metrics, canonically associated to it, acting on a manifold or at the level of its tangent bundle. Freely falling particles in these “toy Universes” are determined, showing an interesting behavior and unexpected patterns.
基金Jointly supported by China Major Key Project for Basic Researcher and Provincial Natrural Science Foundation.
文摘In this paper we discuss the convergence of a modified Newton’s method presented by A. Ostrowski [1] and J.F. Traub [2], which has quadratic convergence order but reduces one evaluation of the derivative at every two steps compared with Newton’s method. A convergence theorem is established by using a weak condition a≤3-2(2<sup>1/2</sup>) and a sharp error estimate is given about the iterative sequence.
文摘In this paper, we present and analyze modified families of predictor-corrector iterative methods for finding simple zeros of univariate nonlinear equations, permitting near the root. The main advantage of our methods is that they perform better and moreover, have the same efficiency indices as that of existing multipoint iterative methods. Furthermore, the convergence analysis of the new methods is discussed and several examples are given to illustrate their efficiency.
文摘In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.
文摘Assuming a Winterberg model for space where the vacuum consists of a very stiff two-component superfluid made up of positive and negative mass planckions, Q theory is the hypothesis, that Planck charge, <i>q<sub>pl</sub></i>, was created at the same time as Planck mass. Moreover, the repulsive force that like-mass planckions experience is, in reality, due to the electrostatic force of repulsion between like charges. These forces also give rise to what appears to be a gravitational force of attraction between two like planckions, but this is an illusion. In reality, gravity is electrostatic in origin if our model is correct. We determine the spring constant associated with planckion masses, and find that, <img src="Edit_770c2a48-039c-4cc9-8f66-406c0cfc565c.png" width="90" height="15" alt="" />, where <i>ζ</i>(3) equals Apery’s constant, 1.202 …, and, <i>n</i><sub>+</sub>(0)=<i>n</i>_(0), is the relaxed, <i>i.e.</i>, <img src="Edit_813d5a6f-b79a-49ba-bdf7-5042541b58a0.png" width="25" height="12" alt="" />, number density of the positive and negative mass planckions. In the present epoch, we estimate that, <i>n</i><sub>+</sub>(0) equals, 7.848E54 m<sup>-3</sup>, and the relaxed distance of separation between nearest neighbor positive, or negative, planckion pairs is, <i>l</i><sub>+</sub>(0)=<i>l</i><sub>_</sub>(0)=5.032E-19 meters. These values were determined using box quantization for the positive and negative mass planckions, and considering transitions between energy states, much like as in the hydrogen atom. For the cosmos as a whole, given a net smeared macroscopic gravitational field of, <img src="Edit_efc8003d-5297-4345-adac-4ac95536934d.png" width="80" height="15" alt="" />, due to all the ordinary, and bound, matter contained within the observable universe, an average displacement from equilibrium for the planckion masses is a mere 7.566E-48 meters, within the vacuum made up of these particles. On the surface of the earth, where, <i>g</i>=9.81m/s<sup>2</sup>, the displacement amounts to, 7.824E-38 meters. All of these displacements are due to increased gravitational pressure within the vacuum, which in turn is caused by applied gravitational fields. The gravitational potential is also derived and directly related to gravitational pressure.
文摘We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner iterations in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples that represent a wide range of typical systems.
文摘Newton’s method is used to find the roots of a system of equations <span style="white-space:nowrap;"><em>f</em> (x) = 0</span>. It is one of the most important procedures in numerical analysis, and its applicability extends to differential equations and integral equations. Analysis of the method shows a quadratic convergence under certain assumptions. For several years, researchers have improved the method by proposing modified Newton methods with salutary efforts. A modification of the Newton’s method was proposed by McDougall and Wotherspoon <a href="#ref1">[1]</a> with an order of convergence of <span style="white-space:nowrap;">1+ <span style="white-space:nowrap;">√2</span></span>. On a new type of methods with cubic convergence was proposed by H. H. H. Homeier <a href="#ref2">[2]</a>. In this article, we present a new modification of Newton method based on secant method. Analysis of convergence shows that the new method is cubically convergent. Our method requires an evaluation of the function and one of its derivatives.
文摘In a recent paper, Noor and Khan [M. Aslam Noor, & W. A. Khan, (2012) New Iterative Methods for Solving Nonlinear Equation by Using Homotopy Perturbation Method, Applied Mathematics and Computation, 219, 3565-3574], suggested a fourth-order method for solving nonlinear equations. Per iteration in this method requires two evaluations of the function and two of its first derivatives;therefore, the efficiency index is 1.41421 as Newton’s method. In this paper, we modified this method and obtained a family of iterative methods for appropriate and suitable choice of the parameter. It should be noted that per iteration for the new methods requires two evaluations of the function and one evaluation of its first derivatives, so its efficiency index equals to 1.5874. Analysis of convergence shows that the methods are fourth-order. Several numerical examples are given to illustrate the performance of the presented methods.
基金Supported by The Special Funds For Major State Basic Research Projects (No. G1999032803) The China NNSF 0utstanding Young Scientist Foundation (No. 10525102)+1 种基金 The National Natural Science Foundation (No. 10471146) The National Basic Research Program (No. 2005CB321702), P.R. China.
文摘We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.
文摘针对S变换在电能质量扰动检测中存在计算量过大,时频分辨率低,电能质量扰动数据集常具备类别不平衡的问题,提出一种基于改进Kaiser窗快速S变换(modified Kaiser window fast S-transform,FMKST)和轻梯度提升机(light gradient boosting machine,LightGBM)的电能质量扰动识别与分类新方法。首先通过快速傅里叶变换得到采样信号频谱;然后利用迭代循环滤波区间定位算法确定扰动频率区间;再根据扰动频率区间所处频段确定窗宽调节因子并对相应区间进行变换;最后从采样信号的FMKST模时频矩阵中提取特征向量并构建改进LightGBM分类器进行分类。仿真与实验结果表明,提出的方法具有更高的识别准确率与更快的诊断速度,适用于海量电能质量扰动数据的快速识别与分类。