To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemic...To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability.展开更多
In this paper, a collocation technique with the modified equilibrium on line method (ELM) for imposition of Neumann (natural) boundary conditions is presented for solving the two-dimensional problems of linear ela...In this paper, a collocation technique with the modified equilibrium on line method (ELM) for imposition of Neumann (natural) boundary conditions is presented for solving the two-dimensional problems of linear elastic body vibrations. In the modified ELM, equilibrium over the lines on the natural boundary is satisfied as Neumann boundary condition equations. In other words, the natural boundary conditions are satisfied naturally by using the weak formulation. The performance of the modified version of the ELM is studied for collocation methods based on two different ways to construct meshless shape functions: moving least squares approximation and radial basis point interpolation. Numerical examples of two-dimensional free and forced vibration analyses show that by using the modified ELM, more stable and accurate results would be obtained in comparison with the direct collocation method.展开更多
In this article, a special type of fractional differential equations(FDEs) named the density-dependent conformable fractional diffusion-reaction(DDCFDR) equation is studied. Aforementioned equation has a significant r...In this article, a special type of fractional differential equations(FDEs) named the density-dependent conformable fractional diffusion-reaction(DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the exp(-φ(ε))-expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.展开更多
基金Funded by the National High Technology Research and Development Program of China(863 Program)(No.2015AA034600)Province Science and Technology in Anhui(No.1301021011)
文摘To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability.
文摘In this paper, a collocation technique with the modified equilibrium on line method (ELM) for imposition of Neumann (natural) boundary conditions is presented for solving the two-dimensional problems of linear elastic body vibrations. In the modified ELM, equilibrium over the lines on the natural boundary is satisfied as Neumann boundary condition equations. In other words, the natural boundary conditions are satisfied naturally by using the weak formulation. The performance of the modified version of the ELM is studied for collocation methods based on two different ways to construct meshless shape functions: moving least squares approximation and radial basis point interpolation. Numerical examples of two-dimensional free and forced vibration analyses show that by using the modified ELM, more stable and accurate results would be obtained in comparison with the direct collocation method.
文摘In this article, a special type of fractional differential equations(FDEs) named the density-dependent conformable fractional diffusion-reaction(DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the exp(-φ(ε))-expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.