This paper introduced a nondestructive testing method to evaluate the dynamic elastic modulus of cement paste. Moreover, the effect of water-cement ratio and conventional admixtures on the dynamic elastic modulus of c...This paper introduced a nondestructive testing method to evaluate the dynamic elastic modulus of cement paste. Moreover, the effect of water-cement ratio and conventional admixtures on the dynamic elastic modulus of cement paste was investigated, in which three kinds of admixtures were taken into account including viscosity modifying admixture (VMA), silica.fume (SF), and shrinkage-reducing admixture (SRA). The experimental results indicate that the dynamic elastic modulus of cement paste increases with decreasing water-cement ratio. The addition of SF increases the dynamic elastic modulus, however, the overdosage of VMA causes its reduction. SRA reduces the dynamic elastic modulus at early age without affecting it in later period. Finally, a multiscale micromechanics approach coupled with a hydration model CEMHYD3D and percolation theory is utilized to predict the elastic modulus of cement paste, and the predictive results by the model are in accordance with the experimental data.展开更多
基金Funded by the National Natural Science Foundation of China(No.51309090)the National Science Foundation for Postdoctoral Scientists of China(No.2013M531268)the Jiangsu Planned Projects for Postdoctoral Research Funds(No.1302101C)
文摘This paper introduced a nondestructive testing method to evaluate the dynamic elastic modulus of cement paste. Moreover, the effect of water-cement ratio and conventional admixtures on the dynamic elastic modulus of cement paste was investigated, in which three kinds of admixtures were taken into account including viscosity modifying admixture (VMA), silica.fume (SF), and shrinkage-reducing admixture (SRA). The experimental results indicate that the dynamic elastic modulus of cement paste increases with decreasing water-cement ratio. The addition of SF increases the dynamic elastic modulus, however, the overdosage of VMA causes its reduction. SRA reduces the dynamic elastic modulus at early age without affecting it in later period. Finally, a multiscale micromechanics approach coupled with a hydration model CEMHYD3D and percolation theory is utilized to predict the elastic modulus of cement paste, and the predictive results by the model are in accordance with the experimental data.