This paper explores the capability of modified differential evolution (MDE) technique for solving the reactive power dispatch (RPD) problem. The proposed method is based on the basic differential evolution (DE) ...This paper explores the capability of modified differential evolution (MDE) technique for solving the reactive power dispatch (RPD) problem. The proposed method is based on the basic differential evolution (DE) technique with a few modifications made into it. DE is one of the strongest optimization techniques though it suffers from the problem of slow convergence while global minima appear. The proposed modifications ate tried to resolve the problem. The RPD problem mainly defines loss minimization with stable voltage profile. To solve the RPD problem, the generator bus voltage, transformer tap setting and shunt capacitor placements are controlled by the MDE approach. In this paper, IEEE 14-bus and IEEE 30-bus systems are chosen for MDE implementation. The applied modification show much improved result in comparison to normal DE technique. Comparative study with other softcomputing technique including DE validates the effectiveness of the proposed method.展开更多
提出一种用于虹膜定位的差分进化算法(modified differential evolution,MDE).MDE和原始差分进化算法(differential evolution,DE)主要有3点不同:第一,MDE采用了基于混沌序列的尺度因子和基于均匀分布的交叉率,这有助于提高候选解的多样...提出一种用于虹膜定位的差分进化算法(modified differential evolution,MDE).MDE和原始差分进化算法(differential evolution,DE)主要有3点不同:第一,MDE采用了基于混沌序列的尺度因子和基于均匀分布的交叉率,这有助于提高候选解的多样性;第二,MDE使用中心解来修正最差解的变异操作,这有助于提高候选解的质量;第三,MDE使用最好解来帮助受困解摆脱局部最优点.在搜索边缘前,两种有效的去噪方法被用来减少虹膜图像中噪声的影响.去噪后,再使用MDE和其他4种方法来进行虹膜定位.在中科院(Chinese Academy of Sciences Institute of Automation,CASIA)眼图数据库中选择200幅来自不同个体的虹膜图像来验证和比较MDE及其他4种方法的效率.实验结果表明,与其他4种方法相比,MDE使用更少的执行时间来定位瞳孔边缘和虹膜边缘.展开更多
文摘This paper explores the capability of modified differential evolution (MDE) technique for solving the reactive power dispatch (RPD) problem. The proposed method is based on the basic differential evolution (DE) technique with a few modifications made into it. DE is one of the strongest optimization techniques though it suffers from the problem of slow convergence while global minima appear. The proposed modifications ate tried to resolve the problem. The RPD problem mainly defines loss minimization with stable voltage profile. To solve the RPD problem, the generator bus voltage, transformer tap setting and shunt capacitor placements are controlled by the MDE approach. In this paper, IEEE 14-bus and IEEE 30-bus systems are chosen for MDE implementation. The applied modification show much improved result in comparison to normal DE technique. Comparative study with other softcomputing technique including DE validates the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.61104222)Natural Science Fundamental Research Project of Jiangsu Colleges and Universities(No.11KJB510026)Science Fundamental Research Project of Jiangsu Normal University(No.9212812101)
文摘提出一种用于虹膜定位的差分进化算法(modified differential evolution,MDE).MDE和原始差分进化算法(differential evolution,DE)主要有3点不同:第一,MDE采用了基于混沌序列的尺度因子和基于均匀分布的交叉率,这有助于提高候选解的多样性;第二,MDE使用中心解来修正最差解的变异操作,这有助于提高候选解的质量;第三,MDE使用最好解来帮助受困解摆脱局部最优点.在搜索边缘前,两种有效的去噪方法被用来减少虹膜图像中噪声的影响.去噪后,再使用MDE和其他4种方法来进行虹膜定位.在中科院(Chinese Academy of Sciences Institute of Automation,CASIA)眼图数据库中选择200幅来自不同个体的虹膜图像来验证和比较MDE及其他4种方法的效率.实验结果表明,与其他4种方法相比,MDE使用更少的执行时间来定位瞳孔边缘和虹膜边缘.