期刊文献+
共找到1,763篇文章
< 1 2 89 >
每页显示 20 50 100
Novel wood-plastic composite fabricated via modified steel slag:Preparation,mechanical and flammability properties
1
作者 Ling Zhao Kai Zhao +4 位作者 Zhenwei Shen Yifan Wang Xiaojie Xia Hao Zhang Hongming Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2110-2120,共11页
A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare... A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors. 展开更多
关键词 modified steel slag wood–plastic composites preparation method mechanical property flame retardant
下载PDF
Simulation of the plasticizing behavior of composite modified doublebase(CMDB)propellant in grooved calendar based on adaptive grid technology 被引量:2
2
作者 Su-wei Wang Xiu-duo Song +6 位作者 Zong-kai Wu Lei Xiao Guang-pu Zhang Yu-bing Hu Ga-zi Hao Wei Jiang Feng-qi Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1954-1966,共13页
The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with ... The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle. 展开更多
关键词 composite modified double base propellant Calendering process Fluid simulation Vortex flow0
下载PDF
Toughness and Hot/Wet Properties of a Novel Modified BMI/Carbon Fiber Composite 被引量:5
3
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期17-18,共2页
关键词 BMI Toughness and Hot/Wet Properties of a Novel modified BMI/Carbon Fiber composite
下载PDF
An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites 被引量:1
4
作者 Zhonghao JIANG and Jianshe LIAN(Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China)Shangli DONG and Dezhuang YANG(School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第3期213-221,共9页
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ... The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions 展开更多
关键词 ab Figure An Application of the modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix composites
下载PDF
Pyrolyzed Iron Phthalocyanine-Modified Multi-Walled Carbon Nanotubes as Composite Anode in Marine Sediment Microbial Fuel Cells and Its Electrochemical Performance
5
作者 ZAI Xuerong DUAN Zhiwei +2 位作者 CHEN Wei YU Jian FU Yubin 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第6期1395-1401,共7页
Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phtha... Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance. 展开更多
关键词 marine sediment MICROBIAL fuel cells iron phthalocyanine/multi-walled carbon NANOTUBE composite modified anode electrochemical kinetics power density
下载PDF
Electrochemical oxidation of polyethylene glycol in electroplating solution using paraffin composite copper hexacyanoferrate modified (PCCHM) anode
6
作者 Rajesh S. Bejankiwar Abir Basu Max Cementi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期851-855,共5页
Electrochemical oxidation of polyethylene glycol(PEG) in an acidic(pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the ... Electrochemical oxidation of polyethylene glycol(PEG) in an acidic(pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the printing wiring board industry. A paraffin composite copper hexacyanoferrate modified(PCCHM) electrode was used as the anode and a bare graphite electrode was used as the cathode. The changes in PEG and total organic carbon(TOC) concentrations during the course of the reaction were monitored. The efficiency of the PCCHM anode was compared with bare graphite anode and it was found that the former showed significant electrocatalytic property for PEG and TOC removal. Chlorides present in the solution were found to contribute significantly in the overall organic removal process. Short chain organic compounds like acetic acid, oxalic acid, formic acid and ethylene glycol formed during electrolysis were identified by HPLC method. Anode surface area and applied current density were found to influence the electro-oxidation process, in which the former was found to be dominating. Investigations of the kinetics for the present electrochemical reaction suggested that the two stage first-order kinetic model provides a much better representation of the overall mechanism of the process if compared to the generalized kinetic model. 展开更多
关键词 polyethylene glycol(PEG) paraffin composite copper hexacyanoferrate modified(PCCHM) electrode electroplating solution two stage first-order kinetic model generalized kinetic model
下载PDF
Experimental Investigation of Mechanical Properties of Impact Modified Polyvinyl Chloride-Fly Ash Composites
7
作者 Pramod Shriniwas Joshi Deepti Sanjiv Marathe 《Journal of Minerals and Materials Characterization and Engineering》 2019年第1期34-47,共14页
The mechanical properties like tensile, pin bearing and impact properties have been studied for composites containing Fly Ash (FA) and Impact modifier (IM) in Polyvinyl Chloride (PVC) for furniture and pipe applicatio... The mechanical properties like tensile, pin bearing and impact properties have been studied for composites containing Fly Ash (FA) and Impact modifier (IM) in Polyvinyl Chloride (PVC) for furniture and pipe applications. Pin-bearing test is an important tool to evaluate the ability of the material to retain fasteners and the ability of the material to sustain load during the service life. The present paper evaluates the effect of variation of FA and IM on the pin bearing strength, tensile strength, modulus elongation at break and impact strength. Scanning electron microtopography indicates that the impact modifier forms a co-continuous phase at 10% of IM in PVC. Increase in void content decreases impact strength and tensile strength. As void content increases moisture absorption also increases. The results of pin bearing tests were analogous to tensile test and correlate well. Results were in accordance with impact modification theory. Moisture absorption was studied keeping in view outdoor applications. 展开更多
关键词 Flyash-PVC compositeS IMPACT modifiER Pin Bearing Properties TENSILE Strength
下载PDF
Graphene-gold Nanoparticle Composite Film Modified Electrode for Determination of Trace Mercury in Environmental Water
8
作者 Xue-mei Wang Shou-guo Wu +2 位作者 Hao Liu Lei Zhou Qi-ping Zhao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第5期590-596,I0004,共8页
The graphene-gold nanoparticles composite film modified glassy carbon electrode (EG- AuNPs/GCE) was prepared by one-step coelectrodeposition and employed for determination of trace mercury in environmental water wit... The graphene-gold nanoparticles composite film modified glassy carbon electrode (EG- AuNPs/GCE) was prepared by one-step coelectrodeposition and employed for determination of trace mercury in environmental water with differential pulse stripping voltammetry. Such a nanostructured composite film combined with the advantages of gold nanoparticles and graphene, can greatly promote the electron-transfer process and increase accumulation abil-ity for Hg(Ⅱ), leading to a remarkably improved sensitivity. The linear calibration curve ranged from 0.2 μg/L to 30 μg/L for Hg(Ⅱ) and the detection limit (S/N=3) was found to be 0.03 μg/L at a deposition time of 300 s. Moreover, the stablity of the as-prepared electrode and interferences from other substances were evaluated. The modified electrode was successfully applied to the direct detection of Hg(Ⅱ) in real water samples. 展开更多
关键词 Graphene-gold nanoparticle composite membrane Chemically modified elec-trode MERCURY Stripping voltammetry
下载PDF
Eigen value analysis of composite hollow shafts using modified EMBT formulation considering the shear deformation along the thickness direction
9
作者 Pavani Udatha A.S.Sekhar Velmurugan R 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期1-12,共12页
Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applicatio... Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applications.Dynamic modelling of these shafts is generally carried out using Equivalent Modulus Beam Theory(EMBT)and Layerwise Beam Theory(LBT)formulations.The EMBT formulation is modified by considering stacking sequence,shear normal coupling,bending twisting coupling and bending stretching coupling.It is observed that modified EMBT formulation is underestimating the shafts stiffness at lower length/mean diameter(l/dm)ratios.In the present work,a new formulation is developed by adding shear deformation along the thickness direction to the existing modified EMBT formulation.The variation of shear deformation along the thickness direction is found using different shear deformation theories,i.e.,first-order shear deformation theory(FSDBT),parabolic shear deformation theory(PSDBT),trigonometric shear deformation theory(TSDBT),and hyperbolic shear deformation theory(HSDBT).The analysis is performed at l/d_(m) ratios of 5,10,15,20,25,30,35,and 40 for carbon/epoxy composites,E-glass/epoxy composites,and boron/epoxy composite shafts.The results show that new formulation has improved the bending natural frequency of the composite shafts for l/d_(m)<15 in comparison with modified EMBT.The effect of new formulation is more significant for the second and third bending modes of natural frequencies. 展开更多
关键词 composite hollow shafts Bending natural frequency modified EMBT formulation Thickness effect
下载PDF
Growth of Carbon Nanotubes by Pyrolysis of Composite Film of Poly (Vinyl Alcohol) and Modified Fly Ash
10
作者 Dilip C. D. Nath Veena Sahajwalla 《Materials Sciences and Applications》 2012年第2期120-124,共5页
We found carbon nanotube (CNT) materials by the pyrolysis of the composite film of poly (vinyl alcohol) (PVA) reinforced with modified fly ash (FA) at 500°C for 10 min under 2 L/min flow of nitrogen. Fly ash was ... We found carbon nanotube (CNT) materials by the pyrolysis of the composite film of poly (vinyl alcohol) (PVA) reinforced with modified fly ash (FA) at 500°C for 10 min under 2 L/min flow of nitrogen. Fly ash was treated with 2M sodium hydroxide and used with PVA to fabricate the composite film by aqua casting. CNT materials were analyzed using XPS, Raman, SEM and TEM. The admixtures of CNT materials and FA are a potential filler material for fabricating composites with polymer and metal. The process is an eco-friendly recycling paradigm for using value-added advanced products for the proper management of sustainable waste materials, plastic and FA. 展开更多
关键词 POLY (Vinly Alcohol) modified FLY ASH composite and Carbon NANOTUBE
下载PDF
The Performance of Asphalt Modified with OMMT/SBR Composites
11
作者 王辉 宋国君 +1 位作者 GU Zheng TU Bi-dong 《科技信息》 2014年第5期156-156,115,共2页
The asphalt modified with OMMT/SBR composites were prepared,which the 112#OMMT is chosen,study the impact of OMMT content on the physical properties of the asphalt modified with OMMT/SBR composites,The results show th... The asphalt modified with OMMT/SBR composites were prepared,which the 112#OMMT is chosen,study the impact of OMMT content on the physical properties of the asphalt modified with OMMT/SBR composites,The results show that,the OMMT content is 3%,the physical properties of asphalt modified with OMMT/SBR composites is the best. 展开更多
关键词 The ASPHALT modified with OMMT/SBR compositeS PHYS
下载PDF
Preparation, Electrochemical Property and Application in Bulk-modified Electrode of Dawson-type Phospho-molybdate-doped Polypyrrole Composite Nanoparticles
12
作者 WANG Xiu-li ZHAO Hai-yan WANG Yi-fei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第5期556-559,共4页
A kind of inorganic-organic hybrid semiconductor composite nanoparticles: Dawson-type phosphomolybdate- doped polypyrrole (P2Mo18-PPy) was designed and prepared using microemulsion oxidation-polymerization at room ... A kind of inorganic-organic hybrid semiconductor composite nanoparticles: Dawson-type phosphomolybdate- doped polypyrrole (P2Mo18-PPy) was designed and prepared using microemulsion oxidation-polymerization at room temperature and characterized by TEM and IR. The P2Mo18-PPy was used as a bulk-modifier to fabricate a chemically modified carbon paste electrode(CPE) by direct mixing, which represents the example of polyoxometalates( POMs)- doped semiconductor polymer nanoparticles modified electrode. Both the advantage of POMs-doped polymer and the surface-renewal property of the CPE were fully utilized. The electrochemical behavior of the P2Mo18-PPY bulk-modified CPE(P2Mo18-PPy-CPE) was investigated with cyclic voltammetry. Three couples of reversible redox peaks were observed in the range from + 800 to 0 mV, which corresponded to the reduction and oxidation through two-, four- and six-electron processes, respectively. The P2 Mo18-PPY-CPE showed a high electrocatalytic activity for the reduction of nitrite, which expanded the application of POMs-doped semiconductor polymer nanoparticles. 展开更多
关键词 Dawson-type phosphomolybdate POLYPYRROLE composite nanoparticles Bulk-modified Carbon paste electrode Electrocatalysis
下载PDF
Effects of different modifiers on the properties of wood-polymer composites 被引量:7
13
作者 许民 才智 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第1期77-79,J004,共4页
Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The ... Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai 展开更多
关键词 Wood fiber Thermoplastic polyester Wood-polymer composites modifiER Mechanical properties
下载PDF
Effect of the implant composite of poly lactide-co-glycolide and bone mesenchymal stem cells modified by basic fibroblast growth factor on injured spinal cord in rats
14
作者 刘文革 《外科研究与新技术》 2011年第2期130-130,共1页
Objective To investigate the effect of the implant composite of poly lactide-co-glycolide(PLGA)and bone mesenchymal stem cells (BMSCs) modified by basic fibroblast growth factor (bFGF) on injured spinal cord in rats.M... Objective To investigate the effect of the implant composite of poly lactide-co-glycolide(PLGA)and bone mesenchymal stem cells (BMSCs) modified by basic fibroblast growth factor (bFGF) on injured spinal cord in rats.Methods Two hundred and 展开更多
关键词 BMSCs bFGF Effect of the implant composite of poly lactide-co-glycolide and bone mesenchymal stem cells modified by basic fibroblast growth factor on injured spinal cord in rats stem
下载PDF
Transient response of doubly-curved bio-inspired composite shells resting on viscoelastic foundation subject to blast load using improved first-order shear theory and isogeometric approach 被引量:1
15
作者 Thuy Tran Thi Thu Tu Nguyen Anh +1 位作者 Hue Nguyen Thi Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期171-193,共23页
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties... Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures. 展开更多
关键词 Blast load modified first-order shear theory Biological composite structures
下载PDF
Research Analysis on the Microscopic Properties and Damping Performance of Carbon Nanomaterial-Modified Cement Mortar
16
作者 Bin Liu Norhaiza Nordin +2 位作者 Jiyang Wang Jingwei Wu Xiuliang Liu 《Engineering(科研)》 2024年第9期275-283,共9页
The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive p... The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive possibilities for technological advancements. This research analyzes how the integration of graphene into cement-based composites enhances damping and mechanical properties, thereby contributing to the safety and durability of structures. Research on carbon nanomaterials is ongoing and is expected to continue driving innovation across various industrial sectors, promoting the sustainable development of building materials. 展开更多
关键词 Carbon Nanomaterials Cement-Based composites Microscopic Properties Damping Properties modified Cement Mortar
下载PDF
Effects of Plasticizers,Antioxidants and Burning Rate Modifiers on Aging Performance of the HTPB/HMDI Composite Solid Propellant
17
作者 Ahmed M Enew Ehab Abadir +1 位作者 Sahar Elmarsafy Karim K Elsharkawy 《含能材料》 EI CAS CSCD 北大核心 2019年第1期21-27,90,共8页
The effects of plasticizers,antioxidants and burning rate modifiers on the aging performance of the composite solid propellant based on hydroxyl-terminated polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)were expl... The effects of plasticizers,antioxidants and burning rate modifiers on the aging performance of the composite solid propellant based on hydroxyl-terminated polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)were explored by apply-ing an accelerated aging program for 90 day at 70 ℃. The HTPB propellant matrix with the diisooctyl sebacate(DOS)as plasti-cizers and diisooctyl azelate(DOZ), antioxidants as N,N ′-Diphenyl-p-phenylenediamine(AO) and 2,2′-methylenebis(4-methyl-6-tert-butylphenol)(cyanox 2246)and burning rate modifiers as barium ferrite(BF),copper chromites(CC)and fer-ric oxide(FO)were varied. Results show that sample(S1)which based on DOS decreases the stress value and increases the strain value which considered to be an excellent start for aging program. Sample(S3)containing AO presents the higher resis-tance to oxidation showing the better performance that reflects on increasing the shelf life of the composite solid propellant mo-tor. Sample(S5)which based on BF enhances the ballistic performance among over the other tested two samples. The accelerat-ed aging program allowed us to estimate the motor in-service lifetime. 展开更多
关键词 polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)composite solid PROPELLANT plasticizers ANTIOXIDANTS burning rate modifiERS aging program
下载PDF
Characterization and Thermal Conductivity of Modified Graphite/Fatty Acid Eutectic/PMMA Form-Stable Phase Change Material 被引量:8
18
作者 孟多 WANG Lijiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期586-591,共6页
We prepared and characterized a form-stable composite phase change material (PCM) with higher thermal conductivity. Capric acid(CA)-myristic acid(MA) eutectic as core, poly-methyl methacrylate (PMMA) as suppor... We prepared and characterized a form-stable composite phase change material (PCM) with higher thermal conductivity. Capric acid(CA)-myristic acid(MA) eutectic as core, poly-methyl methacrylate (PMMA) as supportive matrix and modified graphite (MG) powders serving as the thermal conductance improver were blended by bulk- polymerization method. The composite PCMs with different MG mass fraction (2%, 5%, 7%, 10% and 15%) were characterized by FT-IR, SEM, DSC technique and mechanical tests. Thermal conductivities of the composites were measured by transient hot-wire method. The results indicate that MG powders have been successfully inserted into the CA-MA/PMMA matrix without any chemical reaction with each other. The MG/CA-MA/PMMA composites maintain good thermal storage performance while the thermal conductivity has been enhanced significantly. The composite PCM added with 15 wt% MG powders increases approximately as 195.9% in thermal conductivity. Moreover, the thermal conductivity improvement of the composite PCMs is also verified by the melting-freezing experiment, which is profitable for the heat transfer efficiency in latent heat thermal energy storage system. 展开更多
关键词 form-stable composite PCM fatty acid eutectic poly-methyl methacrylate modified graphite thermal conductivity
下载PDF
Recent advances in catalytic combustion of AP-based composite solid propellants 被引量:16
19
作者 Narendra Yadav Prem Kumar Srivastava Mohan Varma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期1013-1031,共19页
Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust ve... Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides(MOs),complexes, metal powders and metal alloys have shown positive catalytic behaviour during the combustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments. 展开更多
关键词 composite solid propellants Burn rate modifier Metallic nano-catalysts Catalytic combustion Thermal decomposition
下载PDF
Ablation Performance of a Novel Super-hybrid Composite 被引量:3
20
作者 JunQIU XiaomingCAO +1 位作者 ChongTIAN JinsongZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期269-273,共5页
A novel super-hybrid composite (NSHC) was boron-modified phenolic resin (BPR) with three-dimensional reticulated SiC ceramic (3DRC) and high silica fibers. Ablation performance of the NSHC was studied. The results sho... A novel super-hybrid composite (NSHC) was boron-modified phenolic resin (BPR) with three-dimensional reticulated SiC ceramic (3DRC) and high silica fibers. Ablation performance of the NSHC was studied. The results show that the linear ablation rate of NSHC was lower than that of pure BPR and the high silica/BPR composite. Its linear ablation rate is 1/17 of the high silica/BPR. Mass ablation rate of the NSHC is very close to that of the pure BPR and the high silica/BPR composite. Scanning electron microscope (SEM) analysis indicates that 3DRC has scarcely changed its shape at the ablation temperature. Its special reticulated structure can restrict the materials deformation and prevent high velocity heat flow from eroding the surface of the materials largely and thus increase ablation resistance of the NSHC. 展开更多
关键词 Ablation performance High silica fiber modified phenolic resin Three-dimensional reticulated SiC ceramic Super-hybrid composite materials
下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部