It was newly found that the electrodes modified by applying ethanol solutions of Nationcontaining os(bpy)32+ onto the substrate electrode (the one-step method) show two pairs of stableredox peaks of Os(bpy)32+/3+ on c...It was newly found that the electrodes modified by applying ethanol solutions of Nationcontaining os(bpy)32+ onto the substrate electrode (the one-step method) show two pairs of stableredox peaks of Os(bpy)32+/3+ on cyclic voltammogram near 0.54V and 0.25V, respectively. Thesemoditied electrodes can effectively mediate and catalyze the first and second steps of nitritereduction in acidic media in the potential region 0-0.9V when the loading in the coating (X=F(Os2+) / F(SO3-)) and pH in solution are below 0. 17 and 4, respectively. When X is between 0.33and 0. 17. only the current peak near 0.54V appears regardless of solution pH and only the first stepof NO2 reduction is catalyzed. Thus the modified electrode provides a very useful flexibility thatone can control the reaction pathway and catalytic activity of nitrite reduction by simply changingthe concentration of the mediator in the coating.展开更多
The electroredox behavior of novel modified electrodes coated with complexes of different polyviologens was investigated using cyclic voltammetry. The influences of compositions of electrolyte complex on the reversibi...The electroredox behavior of novel modified electrodes coated with complexes of different polyviologens was investigated using cyclic voltammetry. The influences of compositions of electrolyte complex on the reversibility of the modified electrode and the electrochromic properties were studied also. It was found that all the ratios of integrated charges of cathodic to anodic scan (Qc/QA) are close to 1, which indicates that these modified electrodes have good reversible behavior. Repeated stepping over the first wave for 500 scans, the PSS-PX(p)V modified electrode showed excellent stability. The first reduction potential (E1), decrease of current height (Dec%), response time (tre tox) of various polyviologen modified electrodes were reported. In addition, the effect of the coverage of polyviologen on the electrode surface was also examined. The rate of electron transfer in this heterogeneous system is diffusion-controlled, consistent with the Conttrell equation.展开更多
Electrochemistry of nitrate reductases (NR) incorporated into 2-aminoethanethiol self-assembled on the gold electrode and polyacrylamide cast on the pyrolytic graphite electrode was examined. NR on chemical modified ...Electrochemistry of nitrate reductases (NR) incorporated into 2-aminoethanethiol self-assembled on the gold electrode and polyacrylamide cast on the pyrolytic graphite electrode was examined. NR on chemical modified electrode showed electrochemical cyclic voltammetric responses in phosphate buffers.展开更多
Electrochemical behaviours of Europium-ferrocene derivative complex chemically modified electrodes were studied in the paper. Various factors which affect the voltammetry of the thin film modified electrodes, and the...Electrochemical behaviours of Europium-ferrocene derivative complex chemically modified electrodes were studied in the paper. Various factors which affect the voltammetry of the thin film modified electrodes, and the charge transport process of the thin film electrode were discussed. Size of the hydrated anion (counter ion), concentration of the electrolyte, swelling property of the film in the solvent and thickness of the film have significant effects on the voltammetry of the thin film electrode. Electrochemical behaviours of europium-ferrocene derivative compelx chemically modified electrode were studied in an aqueous solution. When scan ning between 0-0.8 V (vs. SCE), experimental results indicate that the chemically modified electrode has good stability and reproducibility. The apparent rate constant of electrode reaction is deteminedd to be 6.7×10-1 s-1.展开更多
L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for...L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.展开更多
Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrod...Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrode and the Ni/graphite modified electrode has been carried out. The different effects of concentration, current density and temperature on the rate of degradation were studied. This study shows that the rate of the degradation is more for Ni doped modified graphite electrode. UV-Visible spectra before and after degradation of the dye solution were observed. The thin film formation of Ni or encapsulated in graphite rod is observed by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM & EDAX). The instantaneous current effectiveness values of different experimental conditions are evaluated. The anodic oxidation by Ni/ graphite modified electrode showed the complete degradation of aqueous solution indigocarmine, which is confirmed by UV-Visible and chemical oxygen demand (COD) measurements. The dye is converted into CO2, H2O and simpler inorganic salts. The results observed for reuse of modified electrodes indicate that the Ni/graphite modified electrode would be a promising anode for electrochemical degradation of indigocarmine. This method can be applied for the remediation of waste water containing organics, cost-effective and simple.展开更多
Rifaximin(RFX)is a broad-spectrum oral antibiotic with bactericidal actions against Gram-negative and Gram-positive bacteria.In the present work,a sensitive voltammetric assay for the RFX in pharmaceutical formulation...Rifaximin(RFX)is a broad-spectrum oral antibiotic with bactericidal actions against Gram-negative and Gram-positive bacteria.In the present work,a sensitive voltammetric assay for the RFX in pharmaceutical formulations is designed using nanostructured working electrodes.Surface functionalization with manganese dioxide(MnO_(2))/fullerene-C_(60) nanocomposite exhibited the highest electrochemical responses with a sharp oxidation peak at about 336 mV that was obtained using the differential pulse voltammetry(DPV).The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)were applied,while the electrode matrix composition including types of nanomaterials,electroanalytical parameters,and pH eff ect were optimized.To that end,using the DPV,high sensitivity was obtained from the linear calibration curve ranged from 0.8 to 31.5μg·mL^(-1) with the correlation coe fficient of 0.99,limit of detection of 0.76μg·mL^(-1) and limit of quantification of 2.31μg·mL^(-1) .Accordingly,the designed approach is off ering a potential applicability towards the RFX determination in pharmaceutical preparations and its quality control.展开更多
Paracetamol is a non-steroidal, anti-inflammatory drug widely used in pharmaceutical applications for its sturdy, antipyretic and analgesic action. However, an overdose of paracetamol can cause fulminant hepatic necro...Paracetamol is a non-steroidal, anti-inflammatory drug widely used in pharmaceutical applications for its sturdy, antipyretic and analgesic action. However, an overdose of paracetamol can cause fulminant hepatic necrosis and other toxic effects. Thus, the development of advantageous analytical tools to detect and determine paracetamol is required. Due to simplicity, higher sensitivity and selectivity as well as costefficiency, electrochemical sensors were fully investigated in last decades. This review describes the advancements made in the development of electrochemical sensors for the paracetamol detection and quantification in pharmaceutical and biological samples. The progress made in electrochemical sensors for the selective detection of paracetamol in the last 10 years was examined, with a special focus on highly innovative features introduced by nanotechnology. As the literature is rather extensive, we tried to simplify this work by summarizing and grouping electrochemical sensors according to the by which manner their substrates were chemically modified and the analytical performances obtained.展开更多
1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accompl...1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accomplished towards the functionalization of carbon nanotubes resulting in their enhanced solubilization in aqueous solutions have helped in the preparation of stable carbon nanotube electrodes.Glassy carbon has been invariably the preferred substrate for casting carbon nanotube electrodes.Such c...展开更多
Aminoguanidine hydrazones (AGHs) are a class of compounds that have interesting pharmacological activities. They are derived from the same chemical group as aminoguanidine, so it has mixed properties (receptor and don...Aminoguanidine hydrazones (AGHs) are a class of compounds that have interesting pharmacological activities. They are derived from the same chemical group as aminoguanidine, so it has mixed properties (receptor and donor) in the formation of hydrogen bonds. Its anticancer agent properties were recently highlighted, but the molecules of this class have solubility in aqueous solutions that can be considered low. The identification of this class, by a simple, sensitive and low-cost technique, such as electrochemistry, which also allows the evaluation of its solubilization process through agents such as PAMAM dendrimer is the main objective of the work described here. The electrochemical response of the LQM10 (AGH derivative) was evaluated, as well as its behavior in different electrochemical sensors. Electrochemical experiments were performed in buffered (phosphate at pH 7.02 and acetate at 4.5). LQM10 has a reversible oxidation peak with a potential of +0.22 V. It was efficiently detected in different electrodes tested (glass carbon/CNT, glass carbon/CNT/PAMAM), which proves the viability of the electrodes for various analyses and has the determination of the apparent constant association, indicating its interaction with the analysis that is higher in the presence of the PAMAM encapsulating agent. This was corroborated by the results for the modified gold electrode with MUA and PAMAM. The sum of the results shows the possibility of electrochemically evaluating the Aminoguanidine hydrazone derivative, the viability of electrodes employed and the greater solubilization of LQM10 in the presence of the PAMAM dendrimer.展开更多
The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic...The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.展开更多
A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase ...A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase in mushroom tissue and a graphite electrode. The optimal operation conditions are studied. The linear response range of the biosensor is 2 0×10 -4 to 4 5×10 -3 mol·L -1 with response time of less than 5 min and lifetime of at least 30 d. The biosensor can be applied to practical sample analysis.展开更多
In this paper, the surface of the carbon graphite working electrode has been modified using pyrimethamine/2-sulfanilamido-3-methoxypyrazine (metakelfin) and lumefantrine/artemeter (coartem)-potent antimalarials. T...In this paper, the surface of the carbon graphite working electrode has been modified using pyrimethamine/2-sulfanilamido-3-methoxypyrazine (metakelfin) and lumefantrine/artemeter (coartem)-potent antimalarials. The electrochemical profiles of the surface modified electrodes have been studied using cyclic voltammetry. The results indicate that the metakelfin and lumefantrine/artemeter (coartem) have redox active moieties with the oxidation and reduction peaks for pyrimethamine/2-sulfanilamido-3-methoxypyrazine (metakelfin) modified electrode occurring at 0.510 V and 0.315 V, and that for lumefantrine/artemeter (coartem) occurring at 0.510 V and 0.300 V. Bentonite, a clay montmorrilonite with octahedral and tetrahedral sites which can undergo isomorphous substitution and other interactions was also used modify the electrode surface. The bentonite modified electrode was then used to study metakelfin and lumefantrine/artemeter (coartem). It was observed that the redox properties of metakelfin and lumefantrine/artemeter (coartem) did not change significantly on the bentonite host matrix. It was observed that the redox activity of artemeter was totally inhibited on the bentonite matrix. Interaction of pyrimethamine/2-sulfanilamido-3-methoxypyrazine (metakelfin) and lumefantrine/artemeter (coartem) modified electrodes with selected biomolecules (methionine, arginine, leucine, tyrosine), isonicotinic acid and acetyl salicyclic acid is also reported.展开更多
The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon ele...The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.展开更多
A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix. The ...A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix. The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods. The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values. Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV. The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques. A calibration curve in the range of 0.03 to 2400 μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3?) under the optimized conditions. The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.展开更多
Poly-L-lysine(PLL) was first electrodeposited onto the surface of a glassy carbon(GC) electrode.The PLL modified electrode was used to immobilize chloroperoxidase(CPO) via 1-[(3-dimethylamino)propyl]-3-ethylcarbodiimi...Poly-L-lysine(PLL) was first electrodeposited onto the surface of a glassy carbon(GC) electrode.The PLL modified electrode was used to immobilize chloroperoxidase(CPO) via 1-[(3-dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride(EDC).The electrochemical behaviors of immobilized CPO on PLL/GC electrode were investigated by cyclic voltammetry(CV).The CV results obtained showed that CPO was successfully immobilized on the PLL/GC electrode and a fast direct electron transfer between CPO and PLL-GC electrod...展开更多
A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbicacid into two well-defined peak by 212 mV. ...A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbicacid into two well-defined peak by 212 mV. The mechanism of discrimination of dopamine fromascorbic acid is discussed. Dopamine can be determined selectively with the carbonnanotube-chitosan modified electrode. The electrode shows good sensitivity, selectivity andstability.展开更多
Graphite material was used as the electrode for an all-vanadium redox flow battery, and the electrode was modified by transition metallic ions to enhance its electrochemical behavior. An porous graphite composite elec...Graphite material was used as the electrode for an all-vanadium redox flow battery, and the electrode was modified by transition metallic ions to enhance its electrochemical behavior. An porous graphite composite electrode has high specific surface area and high current density. The electrode modified by transition metallic ions has improved catalysis behavior that can catalyze the V(Ⅱ)-V(Ⅴ) redox reaction showed by cyclic voltammograms. This article studied the impedance of the modified electrode by electrochemical impedance spectroscopy (EIS), and approved that the electrode modified by Co^2+ and Mn^2+ has a lower charge transfer resistance than the non-modified electrode. The effect of average particle size distribution is at lower frequencies that the slope of Warburg impedance is reduced by large particle size distribution. The voltage efficiency of the Co^2+ modified electrode test cell is 81.5%, which is higher than that of the non-modified electrode.展开更多
The electrochemistry behavior of dopamine was investigated by cyclic voltammetry and differential pulse voltammetry at a poly (gallic acid) film modified glassy carbon electrode.Two electrons and two protons participa...The electrochemistry behavior of dopamine was investigated by cyclic voltammetry and differential pulse voltammetry at a poly (gallic acid) film modified glassy carbon electrode.Two electrons and two protons participated in the diffusion-controlled electrocatalytic oxidation of dopamine with a diffusion coefficient of 2.186×10^(-5) cm^2/s.The interference of ascorbic acid with the determination of dopamine could be efficiently eliminated.This work provided a simple approach to selectively and sensitively de...展开更多
文摘It was newly found that the electrodes modified by applying ethanol solutions of Nationcontaining os(bpy)32+ onto the substrate electrode (the one-step method) show two pairs of stableredox peaks of Os(bpy)32+/3+ on cyclic voltammogram near 0.54V and 0.25V, respectively. Thesemoditied electrodes can effectively mediate and catalyze the first and second steps of nitritereduction in acidic media in the potential region 0-0.9V when the loading in the coating (X=F(Os2+) / F(SO3-)) and pH in solution are below 0. 17 and 4, respectively. When X is between 0.33and 0. 17. only the current peak near 0.54V appears regardless of solution pH and only the first stepof NO2 reduction is catalyzed. Thus the modified electrode provides a very useful flexibility thatone can control the reaction pathway and catalytic activity of nitrite reduction by simply changingthe concentration of the mediator in the coating.
基金Supported by the National Natural Science Foundation of China
文摘The electroredox behavior of novel modified electrodes coated with complexes of different polyviologens was investigated using cyclic voltammetry. The influences of compositions of electrolyte complex on the reversibility of the modified electrode and the electrochromic properties were studied also. It was found that all the ratios of integrated charges of cathodic to anodic scan (Qc/QA) are close to 1, which indicates that these modified electrodes have good reversible behavior. Repeated stepping over the first wave for 500 scans, the PSS-PX(p)V modified electrode showed excellent stability. The first reduction potential (E1), decrease of current height (Dec%), response time (tre tox) of various polyviologen modified electrodes were reported. In addition, the effect of the coverage of polyviologen on the electrode surface was also examined. The rate of electron transfer in this heterogeneous system is diffusion-controlled, consistent with the Conttrell equation.
基金We are grateful to the NNSFC (29973026), BNSF (2992007) Foundation for University Key Teacher by the Ministry of Education for the provision of financial support.
文摘Electrochemistry of nitrate reductases (NR) incorporated into 2-aminoethanethiol self-assembled on the gold electrode and polyacrylamide cast on the pyrolytic graphite electrode was examined. NR on chemical modified electrode showed electrochemical cyclic voltammetric responses in phosphate buffers.
文摘Electrochemical behaviours of Europium-ferrocene derivative complex chemically modified electrodes were studied in the paper. Various factors which affect the voltammetry of the thin film modified electrodes, and the charge transport process of the thin film electrode were discussed. Size of the hydrated anion (counter ion), concentration of the electrolyte, swelling property of the film in the solvent and thickness of the film have significant effects on the voltammetry of the thin film electrode. Electrochemical behaviours of europium-ferrocene derivative compelx chemically modified electrode were studied in an aqueous solution. When scan ning between 0-0.8 V (vs. SCE), experimental results indicate that the chemically modified electrode has good stability and reproducibility. The apparent rate constant of electrode reaction is deteminedd to be 6.7×10-1 s-1.
文摘L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.
文摘Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrode and the Ni/graphite modified electrode has been carried out. The different effects of concentration, current density and temperature on the rate of degradation were studied. This study shows that the rate of the degradation is more for Ni doped modified graphite electrode. UV-Visible spectra before and after degradation of the dye solution were observed. The thin film formation of Ni or encapsulated in graphite rod is observed by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM & EDAX). The instantaneous current effectiveness values of different experimental conditions are evaluated. The anodic oxidation by Ni/ graphite modified electrode showed the complete degradation of aqueous solution indigocarmine, which is confirmed by UV-Visible and chemical oxygen demand (COD) measurements. The dye is converted into CO2, H2O and simpler inorganic salts. The results observed for reuse of modified electrodes indicate that the Ni/graphite modified electrode would be a promising anode for electrochemical degradation of indigocarmine. This method can be applied for the remediation of waste water containing organics, cost-effective and simple.
基金the great gratitude to the project fund received from the National Research Centre(NRC,Cairo,Egypt)for the internal grant(No.11090306)。
文摘Rifaximin(RFX)is a broad-spectrum oral antibiotic with bactericidal actions against Gram-negative and Gram-positive bacteria.In the present work,a sensitive voltammetric assay for the RFX in pharmaceutical formulations is designed using nanostructured working electrodes.Surface functionalization with manganese dioxide(MnO_(2))/fullerene-C_(60) nanocomposite exhibited the highest electrochemical responses with a sharp oxidation peak at about 336 mV that was obtained using the differential pulse voltammetry(DPV).The cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)were applied,while the electrode matrix composition including types of nanomaterials,electroanalytical parameters,and pH eff ect were optimized.To that end,using the DPV,high sensitivity was obtained from the linear calibration curve ranged from 0.8 to 31.5μg·mL^(-1) with the correlation coe fficient of 0.99,limit of detection of 0.76μg·mL^(-1) and limit of quantification of 2.31μg·mL^(-1) .Accordingly,the designed approach is off ering a potential applicability towards the RFX determination in pharmaceutical preparations and its quality control.
文摘Paracetamol is a non-steroidal, anti-inflammatory drug widely used in pharmaceutical applications for its sturdy, antipyretic and analgesic action. However, an overdose of paracetamol can cause fulminant hepatic necrosis and other toxic effects. Thus, the development of advantageous analytical tools to detect and determine paracetamol is required. Due to simplicity, higher sensitivity and selectivity as well as costefficiency, electrochemical sensors were fully investigated in last decades. This review describes the advancements made in the development of electrochemical sensors for the paracetamol detection and quantification in pharmaceutical and biological samples. The progress made in electrochemical sensors for the selective detection of paracetamol in the last 10 years was examined, with a special focus on highly innovative features introduced by nanotechnology. As the literature is rather extensive, we tried to simplify this work by summarizing and grouping electrochemical sensors according to the by which manner their substrates were chemically modified and the analytical performances obtained.
文摘1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accomplished towards the functionalization of carbon nanotubes resulting in their enhanced solubilization in aqueous solutions have helped in the preparation of stable carbon nanotube electrodes.Glassy carbon has been invariably the preferred substrate for casting carbon nanotube electrodes.Such c...
基金Brazilian agencies CNPq,CAPES,FAPEAL and UFAL for financial support
文摘Aminoguanidine hydrazones (AGHs) are a class of compounds that have interesting pharmacological activities. They are derived from the same chemical group as aminoguanidine, so it has mixed properties (receptor and donor) in the formation of hydrogen bonds. Its anticancer agent properties were recently highlighted, but the molecules of this class have solubility in aqueous solutions that can be considered low. The identification of this class, by a simple, sensitive and low-cost technique, such as electrochemistry, which also allows the evaluation of its solubilization process through agents such as PAMAM dendrimer is the main objective of the work described here. The electrochemical response of the LQM10 (AGH derivative) was evaluated, as well as its behavior in different electrochemical sensors. Electrochemical experiments were performed in buffered (phosphate at pH 7.02 and acetate at 4.5). LQM10 has a reversible oxidation peak with a potential of +0.22 V. It was efficiently detected in different electrodes tested (glass carbon/CNT, glass carbon/CNT/PAMAM), which proves the viability of the electrodes for various analyses and has the determination of the apparent constant association, indicating its interaction with the analysis that is higher in the presence of the PAMAM encapsulating agent. This was corroborated by the results for the modified gold electrode with MUA and PAMAM. The sum of the results shows the possibility of electrochemically evaluating the Aminoguanidine hydrazone derivative, the viability of electrodes employed and the greater solubilization of LQM10 in the presence of the PAMAM dendrimer.
基金financial assistance from Tehran University of Medical Sciences,Tehran,Iran
文摘The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.
文摘A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase in mushroom tissue and a graphite electrode. The optimal operation conditions are studied. The linear response range of the biosensor is 2 0×10 -4 to 4 5×10 -3 mol·L -1 with response time of less than 5 min and lifetime of at least 30 d. The biosensor can be applied to practical sample analysis.
文摘In this paper, the surface of the carbon graphite working electrode has been modified using pyrimethamine/2-sulfanilamido-3-methoxypyrazine (metakelfin) and lumefantrine/artemeter (coartem)-potent antimalarials. The electrochemical profiles of the surface modified electrodes have been studied using cyclic voltammetry. The results indicate that the metakelfin and lumefantrine/artemeter (coartem) have redox active moieties with the oxidation and reduction peaks for pyrimethamine/2-sulfanilamido-3-methoxypyrazine (metakelfin) modified electrode occurring at 0.510 V and 0.315 V, and that for lumefantrine/artemeter (coartem) occurring at 0.510 V and 0.300 V. Bentonite, a clay montmorrilonite with octahedral and tetrahedral sites which can undergo isomorphous substitution and other interactions was also used modify the electrode surface. The bentonite modified electrode was then used to study metakelfin and lumefantrine/artemeter (coartem). It was observed that the redox properties of metakelfin and lumefantrine/artemeter (coartem) did not change significantly on the bentonite host matrix. It was observed that the redox activity of artemeter was totally inhibited on the bentonite matrix. Interaction of pyrimethamine/2-sulfanilamido-3-methoxypyrazine (metakelfin) and lumefantrine/artemeter (coartem) modified electrodes with selected biomolecules (methionine, arginine, leucine, tyrosine), isonicotinic acid and acetyl salicyclic acid is also reported.
文摘The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.
文摘A carbon paste electrode (CPE) modified with ferrocene carboxylic acid (FcCA) and TiO2 nanoparticles was constructed by incorporating TiO2 nanoparticles and ferrocene carboxylic acid into the carbon paste matrix. The electrochemical behavior of captopril (CAP) at the surface of the modified electrode was investigated using electroanalytical methods. The modified electrode showed excellent electrocatalytic activity for the oxidation of CAP in aqueous solutions at physiological pH values. Cyclic voltammetric curves showed that the oxidation of CAP at the surface of the modified electrode reduced its overpotential by more than 290 mV. The modified electrode was used for detecting captopril using cyclic voltammetry and square wave voltammetry techniques. A calibration curve in the range of 0.03 to 2400 μmol/L was obtained that had a detection limit of 0.0096 μmol/L (3?) under the optimized conditions. The modified electrode was successfully used for the determination of captopril in pharmaceutical and biological samples.
基金supported by grant from National Natural Science Foundation of China(No.20775049).
文摘Poly-L-lysine(PLL) was first electrodeposited onto the surface of a glassy carbon(GC) electrode.The PLL modified electrode was used to immobilize chloroperoxidase(CPO) via 1-[(3-dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride(EDC).The electrochemical behaviors of immobilized CPO on PLL/GC electrode were investigated by cyclic voltammetry(CV).The CV results obtained showed that CPO was successfully immobilized on the PLL/GC electrode and a fast direct electron transfer between CPO and PLL-GC electrod...
文摘A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbicacid into two well-defined peak by 212 mV. The mechanism of discrimination of dopamine fromascorbic acid is discussed. Dopamine can be determined selectively with the carbonnanotube-chitosan modified electrode. The electrode shows good sensitivity, selectivity andstability.
基金This work was financially supported by the National Natural Science Foundation of China (No. 90510001).
文摘Graphite material was used as the electrode for an all-vanadium redox flow battery, and the electrode was modified by transition metallic ions to enhance its electrochemical behavior. An porous graphite composite electrode has high specific surface area and high current density. The electrode modified by transition metallic ions has improved catalysis behavior that can catalyze the V(Ⅱ)-V(Ⅴ) redox reaction showed by cyclic voltammograms. This article studied the impedance of the modified electrode by electrochemical impedance spectroscopy (EIS), and approved that the electrode modified by Co^2+ and Mn^2+ has a lower charge transfer resistance than the non-modified electrode. The effect of average particle size distribution is at lower frequencies that the slope of Warburg impedance is reduced by large particle size distribution. The voltage efficiency of the Co^2+ modified electrode test cell is 81.5%, which is higher than that of the non-modified electrode.
文摘The electrochemistry behavior of dopamine was investigated by cyclic voltammetry and differential pulse voltammetry at a poly (gallic acid) film modified glassy carbon electrode.Two electrons and two protons participated in the diffusion-controlled electrocatalytic oxidation of dopamine with a diffusion coefficient of 2.186×10^(-5) cm^2/s.The interference of ascorbic acid with the determination of dopamine could be efficiently eliminated.This work provided a simple approach to selectively and sensitively de...