Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) u...Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier.展开更多
By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is de...By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we obtain some novel folded localized excitations of the system.展开更多
In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local disco...In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.展开更多
This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Un...This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.展开更多
The existing magnetomechancial models cannot explain the different experimental phenomena when the ferromagnetic specimen is respectively subjected to tension and compression stress in the constant and low intensity m...The existing magnetomechancial models cannot explain the different experimental phenomena when the ferromagnetic specimen is respectively subjected to tension and compression stress in the constant and low intensity magnetic field,especially in the compression case. To promote the development of magnetomechancial theory, the energy conservation equation, effective magnetic field equation, and anhysteretic magnetization equation of the original Jiles-Atherton(J-A)theory are elucidated and modified, an equation of the local equilibrium status is employed and the differential expression of the modified magnetomechancial model based on the modified J-A theory is established finally. The effect of stress and plastic deformation on the magnetic parameters is analyzed. An excellent agreement is achieved between the theoretic predictions by the present modified model and the previous experimental results. Comparing with the calculation results given by the existing models and experimental results, it is seen indeed that the modified magnetomechanical model can describe the different magnetization features during tension-release and compression-release processes much better, and is the only one which can accurately reflect the experimental observation that the magnetic induction intensity reverses to negative value with the increase of the compressive stress and applied field.展开更多
Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussi...Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.展开更多
By means of a Painlevé-Baicklund transformation and a multi-linear separation-of-variable approach, abundant localized coherent excitations of a modified Broer-Kaup system are derived. There appear possible phase...By means of a Painlevé-Baicklund transformation and a multi-linear separation-of-variable approach, abundant localized coherent excitations of a modified Broer-Kaup system are derived. There appear possible phase shifts for the interactions of the (2+1)-dimensional novel localized structures, which are discussed in this paper.展开更多
As the basic work of image stitching and object recognition,image registration played an important part in the image processing field.Much previous work in registration accuracy and realtime performance progressed ver...As the basic work of image stitching and object recognition,image registration played an important part in the image processing field.Much previous work in registration accuracy and realtime performance progressed very slowly,especially in registrating images with line feature.An innovative method for image registration based on lines is proposed,it can effectively improve the accuracy and real-time performance of image registration.The line feature can deal with some registration problems where point feature does not work.Our registration process is divided into two parts.The first part determines the rough registration transformation relation between reference image and test image.Then the similarity degree among different transformation and modified nonmaximum suppression(MNMS)algorithms are obtained,which produce local optimal solution to optimize the rough registration transformation.The final optimal registration relation can be obtained from two registration parts according to the match scores.The experimental results show that the proposed method makes a more accurate registration relation and performs better in real-time situation.展开更多
In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, ...In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, some special localized structures for the (2+1)-dimensional coupled Burgers equation are obtained, in particular, the dromion-like and solitoff-like structures.展开更多
A buckling model of Timoshenko micro-beam with local thickness defects is established based on a modified gradient elasticity.By introducing the local thickness defects function of the micro-beam,the variable coeffici...A buckling model of Timoshenko micro-beam with local thickness defects is established based on a modified gradient elasticity.By introducing the local thickness defects function of the micro-beam,the variable coefficient differential equations of the buckling problem are obtained with the variational principle.Combining the eigensolution series of the complete micro-beam with the Galerkin method,we obtain the critical load and buckling modes of the micro-beam with defects.The results show that the depth and location of the defect are the main factors affecting the critical load,and the combined effect of boundary conditions and defects can significantly change the buckling mode of the micro-beam.The effect of defect location on buckling is related to the axial gradient of the rotation angle,and defects should be avoided at the maximum axial gradient of the rotation angle.The model and method are also applicable to the static deformation and vibration of the micro-beam.展开更多
Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach...Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach of personal authentication using texture based Finger Knuckle Print (FKP) recognition in multiresolution domain. FKP images are rich in texture patterns. Recently, many texture patterns are proposed for biometric feature extraction. Hence, it is essential to review whether Local Binary Patterns or its variants perform well for FKP recognition. In this paper, Local Directional Pattern (LDP), Local Derivative Ternary Pattern (LDTP) and Local Texture Description Framework based Modified Local Directional Pattern (LTDF_MLDN) based feature extraction in multiresolution domain are experimented with Nearest Neighbor and Extreme Learning Machine (ELM) Classifier for FKP recognition. Experiments were conducted on PolYU database. The result shows that LDTP in Contourlet domain achieves a promising performance. It also proves that Soft classifier performs better than the hard classifier.展开更多
In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)...In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)equation.In which,the first order linear scheme is based on the invariant energy quadratization approach.The MPFC equation is a damped wave equation,and to preserve an energy stability,it is necessary to introduce a pseudo energy,which all increase the difficulty of constructing numerical methods comparing with the phase field crystal(PFC)equation.Due to the severe time step restriction of explicit timemarchingmethods,we introduce the first order and second order semi-implicit schemes,which are proved to be unconditionally energy stable.In order to improve the temporal accuracy,the semi-implicit spectral deferred correction(SDC)method combining with the first order convex splitting scheme is employed.Numerical simulations of the MPFC equation always need long time to reach steady state,and then adaptive time-stepping method is necessary and of paramount importance.The schemes at the implicit time level are linear or nonlinear and we solve them by multigrid solver.Numerical experiments of the accuracy and long time simulations are presented demonstrating the capability and efficiency of the proposed methods,and the effectiveness of the adaptive time-stepping strategy.展开更多
基金supported by the National Natural Science Foundation of China (62101359)Sichuan University and Yibin Municipal People’s Government University and City Strategic Cooperation Special Fund Project (2020CDYB-29)+1 种基金the Science and Technology Plan Transfer Payment Project of Sichuan Province (2021ZYSF007)the Key Research and Development Program of Science and Technology Department of Sichuan Province (2020YFS0575,2021KJT0012-2 021YFS-0067)。
文摘Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier.
基金Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6100257 and Y6110140)
文摘By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we obtain some novel folded localized excitations of the system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Research Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.
文摘This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.
基金Project supported by the Major Program of Sichuan Province Science and Technology Plan,China(Grant No.2015SZ0010)the Scientific Research Foundation of Sichuan Province,China(Grant No.2014GZ0121)
文摘The existing magnetomechancial models cannot explain the different experimental phenomena when the ferromagnetic specimen is respectively subjected to tension and compression stress in the constant and low intensity magnetic field,especially in the compression case. To promote the development of magnetomechancial theory, the energy conservation equation, effective magnetic field equation, and anhysteretic magnetization equation of the original Jiles-Atherton(J-A)theory are elucidated and modified, an equation of the local equilibrium status is employed and the differential expression of the modified magnetomechancial model based on the modified J-A theory is established finally. The effect of stress and plastic deformation on the magnetic parameters is analyzed. An excellent agreement is achieved between the theoretic predictions by the present modified model and the previous experimental results. Comparing with the calculation results given by the existing models and experimental results, it is seen indeed that the modified magnetomechanical model can describe the different magnetization features during tension-release and compression-release processes much better, and is the only one which can accurately reflect the experimental observation that the magnetic induction intensity reverses to negative value with the increase of the compressive stress and applied field.
基金Supported by the National Natural Science Foundation of China(61273167)
文摘Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071) and the Key Assisted Academic Discipline of Zhejiang Province (Grant No 200337).
文摘By means of a Painlevé-Baicklund transformation and a multi-linear separation-of-variable approach, abundant localized coherent excitations of a modified Broer-Kaup system are derived. There appear possible phase shifts for the interactions of the (2+1)-dimensional novel localized structures, which are discussed in this paper.
文摘As the basic work of image stitching and object recognition,image registration played an important part in the image processing field.Much previous work in registration accuracy and realtime performance progressed very slowly,especially in registrating images with line feature.An innovative method for image registration based on lines is proposed,it can effectively improve the accuracy and real-time performance of image registration.The line feature can deal with some registration problems where point feature does not work.Our registration process is divided into two parts.The first part determines the rough registration transformation relation between reference image and test image.Then the similarity degree among different transformation and modified nonmaximum suppression(MNMS)algorithms are obtained,which produce local optimal solution to optimize the rough registration transformation.The final optimal registration relation can be obtained from two registration parts according to the match scores.The experimental results show that the proposed method makes a more accurate registration relation and performs better in real-time situation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11175092)the Scientific Research Fund of Education Department of Zhejiang Province of China (Grant No. Y201017148)K. C. Wong Magna Fund in Ningbo University
文摘In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, some special localized structures for the (2+1)-dimensional coupled Burgers equation are obtained, in particular, the dromion-like and solitoff-like structures.
基金Project supported by the Young Core Instructor and Domestic Visitor Foundation from the Education Commission of Hunan Province(No.21B0315)。
文摘A buckling model of Timoshenko micro-beam with local thickness defects is established based on a modified gradient elasticity.By introducing the local thickness defects function of the micro-beam,the variable coefficient differential equations of the buckling problem are obtained with the variational principle.Combining the eigensolution series of the complete micro-beam with the Galerkin method,we obtain the critical load and buckling modes of the micro-beam with defects.The results show that the depth and location of the defect are the main factors affecting the critical load,and the combined effect of boundary conditions and defects can significantly change the buckling mode of the micro-beam.The effect of defect location on buckling is related to the axial gradient of the rotation angle,and defects should be avoided at the maximum axial gradient of the rotation angle.The model and method are also applicable to the static deformation and vibration of the micro-beam.
文摘Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach of personal authentication using texture based Finger Knuckle Print (FKP) recognition in multiresolution domain. FKP images are rich in texture patterns. Recently, many texture patterns are proposed for biometric feature extraction. Hence, it is essential to review whether Local Binary Patterns or its variants perform well for FKP recognition. In this paper, Local Directional Pattern (LDP), Local Derivative Ternary Pattern (LDTP) and Local Texture Description Framework based Modified Local Directional Pattern (LTDF_MLDN) based feature extraction in multiresolution domain are experimented with Nearest Neighbor and Extreme Learning Machine (ELM) Classifier for FKP recognition. Experiments were conducted on PolYU database. The result shows that LDTP in Contourlet domain achieves a promising performance. It also proves that Soft classifier performs better than the hard classifier.
基金Research of R.Guo is supported by NSFC grant No.11601490Research of Y.Xu is supported by NSFC grant No.11371342,11626253,91630207.
文摘In this paper,we will develop a first order and a second order convex splitting,and a first order linear energy stable fully discrete local discontinuous Galerkin(LDG)methods for the modified phase field crystal(MPFC)equation.In which,the first order linear scheme is based on the invariant energy quadratization approach.The MPFC equation is a damped wave equation,and to preserve an energy stability,it is necessary to introduce a pseudo energy,which all increase the difficulty of constructing numerical methods comparing with the phase field crystal(PFC)equation.Due to the severe time step restriction of explicit timemarchingmethods,we introduce the first order and second order semi-implicit schemes,which are proved to be unconditionally energy stable.In order to improve the temporal accuracy,the semi-implicit spectral deferred correction(SDC)method combining with the first order convex splitting scheme is employed.Numerical simulations of the MPFC equation always need long time to reach steady state,and then adaptive time-stepping method is necessary and of paramount importance.The schemes at the implicit time level are linear or nonlinear and we solve them by multigrid solver.Numerical experiments of the accuracy and long time simulations are presented demonstrating the capability and efficiency of the proposed methods,and the effectiveness of the adaptive time-stepping strategy.