In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene...In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.展开更多
Antistatic polymer fibers were investigated by using carbon nanotubes (CNTs) to enhance the antistatic ability of inner antistatic agents based on the mechanism of attracting moisture by polar radical groups. It is ...Antistatic polymer fibers were investigated by using carbon nanotubes (CNTs) to enhance the antistatic ability of inner antistatic agents based on the mechanism of attracting moisture by polar radical groups. It is indicated that the antistatic ability of the fibers filled with composite antistatic agents that contain CNTs and organic antistatic agents was superior to that of the fibers filled either with pure organic antistatic agents or pure CNTs. The antistatic ability of the composite antistatic agent fabricated by an in situ process was superior to that of the composite antistatic agent fabricated by direct dispersing CNTs in the antistatic agent carrier. Moreover, the heat-treated CNTs could further enhance the antistatic effect compared with the initial CNTs. The antistatic effect is significantly influenced by the content of CNTs in the composite antistatic agent.展开更多
The an thors developed a new composite cement base material by mixing the high tenacity polypropylene (coarse) fiber in plain cement base for the cement-layer-spray technology. By studying the key parameters of the ...The an thors developed a new composite cement base material by mixing the high tenacity polypropylene (coarse) fiber in plain cement base for the cement-layer-spray technology. By studying the key parameters of the fiber dosage, the spray layer thickness, and the fiber reinforced concrete injection time, etc. It is found that the ideal volume ratio of polypropylene (crude) fiber is 0.8% (V/V), and the secondary lining fiber concrete spraying should start when the shrinkage rate is lower than 0.5 mm/d, and the optimal thickness of shotcrete is 120 mm. The supporting effects and the economic benefits were studied using a real project practice, and the result obtained can be a good reference for practical applications of this new supporting material in the future.展开更多
Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated w...Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated with NaOH to improve its compatibility with the thermoplastic matrix. Maleated polypropylene (MAPP) was used as a coupling agent to improve the interfacial adhesion between KF, WF, and PP. Incorporation of KF improved the mechanical properties of WF/PP composites. Treatment of KF with NaOH resulted in further improvement in mechanical strength. Addition of 3% MAPP and 2% hydrolyzed KF (HKF) led to an increment of 93.8% in unnotched impact strength, 17.7% in notched impact strength, 86.8% in flexure strength, 50.8% in flexure modulus, and 94.1% in tensile strength compared to traditional WF/PP composites. Scanning electron microscopy of the cryo-fractured section of WF/PP showed that the HKF surface was rougher than the virgin KF, and the KF was randomly distributed in the composites, which might cause a mechanical interlocking between KF and polypropylene molecules in the composites.展开更多
In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive ...In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.展开更多
Modified polypropylene fiber reinforced cement compos-ites were investigated in their abrasion resistance andsurface morphology. The test results showed the addingof fiber could noticeably improve the abrasion resista...Modified polypropylene fiber reinforced cement compos-ites were investigated in their abrasion resistance andsurface morphology. The test results showed the addingof fiber could noticeably improve the abrasion resistanceof composite. The bonding and friction of fibers/cementwere the main contribution to abrasion resistance im-provement, which resulted from the surface morphologyobservation.展开更多
Ramie fiber (RF) was used to reinforce the polypropylene (PP). The composites were prepared with a melting hybrid technology. Tests had been performed on PP and composites with different RF contents (10 wt%, 20 w...Ramie fiber (RF) was used to reinforce the polypropylene (PP). The composites were prepared with a melting hybrid technology. Tests had been performed on PP and composites with different RF contents (10 wt%, 20 wt%, and 30 wt%). By using SEM, DSC, TGA, electronic universal testing machine, HDT-VICAT tester and coefficient of linear expansion tester, the effects of the RF loading were assessed on the basis of morphologies, mechanical and thermal properties as well as vicat softening temperature and CTE of the resulting composites. The results show that the thermal degradation temperature of the PP/RF composites becomes lower with higher fiber content. The crystallization rate of the PP matrix is accelerated by the unmodified RF. Because of the inferior interfacial bonding strength between RF and PP, the tensile strength of composites decreases by the presence of RF. And the RF used is relatively long compared with the diameter, the impact strength of the composites is improved by the unmodified RF. The vicat softening temperature of composites can be increased by about 5℃ in the presence of RF compared with PP. The CTE is reduced significantly in the presence of RF. Generally speaking, impact strength, crystallization rate, vicat softening temperature and CTE of PP/RF composites could be improved in the presence of RF. The tensile strength is decreased and thermal degradation temperature of composites becomes lower, but these should not affect most subsequent normal uses of the composites. As the unmodified RF is used directly, no hazardous waste is produced during the fabrication process, combined with the low price, so, a facile and economic preparation pathway is given by using unmodified natural fiber to reinforce polymer and composites with good performance obtained.展开更多
Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of gr...Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of great concern in many countries where silk is used.Hydrogen peroxide as a naturally occurring compound is an important indicator of detection in both biology and the environment.This study aims to develop a composite fiber with hydrogen peroxide-sensing properties using discarded silk materials.To achieve this goal,firstly,polydopamine(PDA)was used to encapsulate the ZnFe_(2)O_(4) NPs to achieve the improvement of dispersion,and then regenerated silk fibroin(RSF)and PDA@ZnFe_(2)O_(4)/RSF hybrid fibers are prepared by wet spinning.Research has shown that PDA@ZnFe_(2)O_(4)/RSF demonstrates exceptional sensitivity,selectivity,and stability in detecting hydrogen peroxide,while maintaining high mechanical strength.Furthermore,the complete hybridization of PDA@ZnFe_(2)O_(4) with silk fibroin not only results in the combination of the durability of silk fibroin and PDA@ZnFe_(2)O_(4)’s rigidity,ensuring a reliable service life,but also makes PDA@ZnFe_(2)O_(4)/RSF exhibit excellent catalytic activity and biocompatibility.Therefore,the composite fiber exhibits exceptional mechanical properties and reliable hydrogen peroxide sensing capabilities,making it a promising material for biological and medical applications.展开更多
Fiber-reinforced soils have been of great interest to experimenters for building foundations’strength performance,time,and economy.This paper investigates the effects of water content and polypropylene fiber dosage a...Fiber-reinforced soils have been of great interest to experimenters for building foundations’strength performance,time,and economy.This paper investigates the effects of water content and polypropylene fiber dosage and length on loess’s unconfined compressive strength(UCS)according to the central composite response surface design test procedure.The water content is 11%–25%,the mass ratio of fiber to soil is 0.1%–0.9%,and the fiber length ranges from 6–18 mm.The response surface method(RSM)developed full quadratic models of different variables with response values.After analysis of variance(ANOVA),the mathematical model developed in this study was statistically significant(p≤0.05)and applicable to the optimization process.The optimization results showed that the optimal water content values,fiber amount,and fiber length were 16.41%,0.579%,and 14.90 mm,respectively.The unconfined compressive strength of the optimized specimens was increased by 288.017 kPa.The research results can reference the design and construction of fiber-reinforced soil in practical projects such as road base engineering and foundation engineering.展开更多
Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the me...Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.展开更多
Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fiber...Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fibers. The results show that electromagnetism parameters of the modified are different from those of the unmodified. After modification by nano-Ni, the micro-coiled chiral carbon fibers have decreased permittivity and electrical loss. The permeability and magnetic loss of the modified carbon fibers become larger than those of the unmodified ones. Moreover, the modification of unmodified chiral carbon fibers into the modified is much like changing hollow electric windings into those with magnetic cores inside. The modifier intensifies the cross polarization of the chiral carbon fibers and makes the permittivity and the permeability get closer to each other which improves the matching performance and enhances absorbability of coatings. In the range of 6-18 GHz, the reflectivity of the coating is 6-8dB and the bandwidth is 12 GHz. The area density of the coating is below 3 kg/m^2.展开更多
From the environmental consideration,it would be very interesting to use natural fibers such as banana,jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials.Natural fi...From the environmental consideration,it would be very interesting to use natural fibers such as banana,jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials.Natural fibers have many advantages over synthetic ones.Polypropylene banana fiber composites(PPBC)are prepared using untreated and alkali-treated banana fibers at 10-25%by weight of the fiber loading.The thermal properties of polypropylene natural fiber composites are very important for technological uses.Thermogravimetric measurements show that the incorporation of banana fiber into PP enhances the thermal stability of composites containing treated fibers,in comparison with untreated fibers.A composite of biodegradable polypropylene(PP)reinforced with short banana natural fibers was prepared by melt blending followed by a hot press molding system.The thermal properties of matrix materials were studied using thermogravimetric analyzers TGA units.It is observed that the introduction of short banana fibers slightly improved the thermo oxidative stability of PP-banana composites.Physical and chemical changes occurred through dehydration,phase transition,molecular orientation,crystallinity disruption,oxidation and decomposition,and incorporation of several functional groups.Systematic investigations of the thermal behavior of polymers in gas,vacuum or inert atmosphere give the knowledge of how change takes place in polymers.To understand such changes thermogravimetric analysis(TGA)and thermal analysis(TG)were performed.It is observed reinforcement of short banana fiber leads to little improvement in the thermooxidative stability of PPBC.Due to the enhancement of thermo-mechanical properties,such composites may be used as building materials namely roof materials,selling materials and many other engineering applications.展开更多
The influence of low volume fraction of polypropylene(PP) fibers on the tensile properties of normal and high strength concretes was studied. The experimental results indicate that the addition of PP fibers in concr...The influence of low volume fraction of polypropylene(PP) fibers on the tensile properties of normal and high strength concretes was studied. The experimental results indicate that the addition of PP fibers in concrete leads to a reduction in tensile strength during the age of 28 d. Whereas, after 28 days, there is a notable effect in tensile strength due to PP fibers restraining the formation and growth of microcracks in concrete, which improves the continuity and integrality of concrete structure, Thus, a low volume fraction of PP fibers is beneficial to enhancing the long-term tensile strength of concrete materials and improving the durability of concrete structures.展开更多
A new form of foam cement was produced by mixing alkali-activated slag,clay,a small amount of polypropylene fibers with prepared foam during stirring.The preparation of the material is quite different from the normal ...A new form of foam cement was produced by mixing alkali-activated slag,clay,a small amount of polypropylene fibers with prepared foam during stirring.The preparation of the material is quite different from the normal one,which is produced just at room temperature and without baking.The fabrication of this energy-saving and low-price material can be favorable for lowering carbon emission by using recycled industrial wastes.Thermal conductivity of 0.116 W/(m·k),compressive strength of 3.30 MPa,flexural strength of 0.8 MPa and density of 453 kg/m3 can be achieved after 28 days aging.The hydration product is C-S-H with less Ca(OH)2,calcium aluminum and zeolite,which was characterized by X-ray diffraction(XRD) measurement.This prospective foam cement may be expected to be an excellent economical energy-saving building material.展开更多
To improve its limiting flux and antifouling characteristics in a submerged membrane-bioreactor (SMBR) for wastewater treatment, polypropylene hollow fiber microporous membrane (PPHFMM) was surface-modified by the...To improve its limiting flux and antifouling characteristics in a submerged membrane-bioreactor (SMBR) for wastewater treatment, polypropylene hollow fiber microporous membrane (PPHFMM) was surface-modified by the plasma-induced immobilization of poly (N-vinyl-2-pyrrolidone) (PVP) and the plasma treatment with different gases respectively. Attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the structural and morphological changes on the membrane surface. Water contact angle was measured by the sessile drop method. It was found that the water contact angle was 128.8, 72.3, 62.7, 74.4, 79.1, 86.3, and 71.3° for the nascent, PVP-immobilized, air, 02, Ar, CO2 and H2O plasma treated PPHFMM, respectively. The SMBR was operated at fixed transmembrane pressure to determine the limiting flux for the PPHFMM before and after surface modification. Results showed that the limiting flux appeared to be 103, 159, 117, 133, 136, 121 and 152 L/(m^2· h) for the nascent, PVP-immobilized, air, O2, At, CO2 and H2O plasma treated PPHFMM, respectively. After continuous operation for about 50 h in the SMBR, the antifouling characteristics were improved to some extent.展开更多
To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare ...To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.展开更多
In aiming to obtain fibers with enhanced thermal and mechanical properties,graphene based textile fibers with 144 filaments were developed using an approach in which the PP/GnP(polypropylene/graphene nanoplatelets)nan...In aiming to obtain fibers with enhanced thermal and mechanical properties,graphene based textile fibers with 144 filaments were developed using an approach in which the PP/GnP(polypropylene/graphene nanoplatelets)nanocomposite was employed as conductive material in a fiber with circular cross-section geometry.The kinetics of thermal degradation was evaluated by the Broido method using thermogravimetric analysis(TGA).Activation energy was enhanced from 260.6 kJ·mol^-1 to 337.4 kJ·mol^-1 compared to the neat PP.GnP increased the thermal stability of the PP,slowing its degradation by thermal depolymerization.Furthermore,the degree of crystallization declined as the GnP content increased,reducing the tenacity of the yarn,but improving its elastic modulus from 91.9 to 95.9 cN/tex,being a promising alternative to produce smart textiles.In conclusion,it has been confirmed that GnP loading up to 1%(w/w)can be incorporated into polypropylene by melt spinning and that the resulting nanocomposite fibers are suitable for several applications in the textile industry.展开更多
Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, ...Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, for the first time, atomic layer deposition(ALD) is an effective strategy to conveniently upgrade the filtration performances of PPHF membranes. The chemical and morphological changes of the deposited PPHF membranes are characterized by spectral, compositional, microscopic characterizations and protein adsorption measurements. Al_2O_3 is distributed along the cross section of the PP hollow fibers, with decreasing concentration from the outer surface to the inner surface. The pore size of the outer surface can be easily turned by altering the ALD cycles. Interestingly, the hollow fibers become much more ductile after deposition as their elongation at break is increased more than six times after deposition with 100 cycles. The deposited membranes show simultaneously enhanced water permeance and retention after deposition with moderate ALD cycle numbers.For instance, after 50 ALD cycles a 17% increase in water permeance and one-fold increase in BSA rejection are observed. Moreover, the PP membranes exhibit improved fouling-resistance after ALD deposition.展开更多
The article is focused on the influence of inorganic salts on the adsorption of cationically modified starch to fibers. Results show that low concentrations of inorganic salts usually affect the process of adsorption ...The article is focused on the influence of inorganic salts on the adsorption of cationically modified starch to fibers. Results show that low concentrations of inorganic salts usually affect the process of adsorption in a positive way. Adsorption efficiency at higher concentrations, however, depends on the type of inorganic salts as well as the sequence of adding inorganic salts and starch to paper suspension.展开更多
Ultrafine polypropylene fibers are prepared frompolypropylene/easily hydro - degraded polyester (PP/EHDPET) blend fibers, in which file EHDPET compo-nent is degradable by treating with NaOH - H<sub>2</sub&g...Ultrafine polypropylene fibers are prepared frompolypropylene/easily hydro - degraded polyester (PP/EHDPET) blend fibers, in which file EHDPET compo-nent is degradable by treating with NaOH - H<sub>2</sub>O solu-tion. We investigated the morphology of PP/EHDPETblend fibers before and after stretching and alkalinehydrolysis. Then thermal behavior of the blend has alsobeen studied.展开更多
文摘In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.
基金This work was financially supported by the Major State Basic Research Development Program of China (No.10332020)
文摘Antistatic polymer fibers were investigated by using carbon nanotubes (CNTs) to enhance the antistatic ability of inner antistatic agents based on the mechanism of attracting moisture by polar radical groups. It is indicated that the antistatic ability of the fibers filled with composite antistatic agents that contain CNTs and organic antistatic agents was superior to that of the fibers filled either with pure organic antistatic agents or pure CNTs. The antistatic ability of the composite antistatic agent fabricated by an in situ process was superior to that of the composite antistatic agent fabricated by direct dispersing CNTs in the antistatic agent carrier. Moreover, the heat-treated CNTs could further enhance the antistatic effect compared with the initial CNTs. The antistatic effect is significantly influenced by the content of CNTs in the composite antistatic agent.
文摘The an thors developed a new composite cement base material by mixing the high tenacity polypropylene (coarse) fiber in plain cement base for the cement-layer-spray technology. By studying the key parameters of the fiber dosage, the spray layer thickness, and the fiber reinforced concrete injection time, etc. It is found that the ideal volume ratio of polypropylene (crude) fiber is 0.8% (V/V), and the secondary lining fiber concrete spraying should start when the shrinkage rate is lower than 0.5 mm/d, and the optimal thickness of shotcrete is 120 mm. The supporting effects and the economic benefits were studied using a real project practice, and the result obtained can be a good reference for practical applications of this new supporting material in the future.
基金supported by the National Natural Science Foundation of China (Project Nos. 31010103905 and31070507)Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0608)the Fundamental Research Funds for the Central Universities (DL12DB02)
文摘Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated with NaOH to improve its compatibility with the thermoplastic matrix. Maleated polypropylene (MAPP) was used as a coupling agent to improve the interfacial adhesion between KF, WF, and PP. Incorporation of KF improved the mechanical properties of WF/PP composites. Treatment of KF with NaOH resulted in further improvement in mechanical strength. Addition of 3% MAPP and 2% hydrolyzed KF (HKF) led to an increment of 93.8% in unnotched impact strength, 17.7% in notched impact strength, 86.8% in flexure strength, 50.8% in flexure modulus, and 94.1% in tensile strength compared to traditional WF/PP composites. Scanning electron microscopy of the cryo-fractured section of WF/PP showed that the HKF surface was rougher than the virgin KF, and the KF was randomly distributed in the composites, which might cause a mechanical interlocking between KF and polypropylene molecules in the composites.
基金Funded by National Key R&D Program(No.2016YFC0701003)of Chinathe Fundamental Research Funds for the Central Universities
文摘In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.
基金Suppurted by Key Subject Foundation of Shanghai Educational Committe and NSF
文摘Modified polypropylene fiber reinforced cement compos-ites were investigated in their abrasion resistance andsurface morphology. The test results showed the addingof fiber could noticeably improve the abrasion resistanceof composite. The bonding and friction of fibers/cementwere the main contribution to abrasion resistance im-provement, which resulted from the surface morphologyobservation.
基金Funded by the National Natural Science Foundation of China(Nos.21274007,51021064)the Tribology Science Fund of State Key Laboratory of Tribology(No.SKLTKF12A10)the Project of Science and Technology Innovation Platform of Beijing Municipal Education Commission(No.PXM2012-014213-000025)
文摘Ramie fiber (RF) was used to reinforce the polypropylene (PP). The composites were prepared with a melting hybrid technology. Tests had been performed on PP and composites with different RF contents (10 wt%, 20 wt%, and 30 wt%). By using SEM, DSC, TGA, electronic universal testing machine, HDT-VICAT tester and coefficient of linear expansion tester, the effects of the RF loading were assessed on the basis of morphologies, mechanical and thermal properties as well as vicat softening temperature and CTE of the resulting composites. The results show that the thermal degradation temperature of the PP/RF composites becomes lower with higher fiber content. The crystallization rate of the PP matrix is accelerated by the unmodified RF. Because of the inferior interfacial bonding strength between RF and PP, the tensile strength of composites decreases by the presence of RF. And the RF used is relatively long compared with the diameter, the impact strength of the composites is improved by the unmodified RF. The vicat softening temperature of composites can be increased by about 5℃ in the presence of RF compared with PP. The CTE is reduced significantly in the presence of RF. Generally speaking, impact strength, crystallization rate, vicat softening temperature and CTE of PP/RF composites could be improved in the presence of RF. The tensile strength is decreased and thermal degradation temperature of composites becomes lower, but these should not affect most subsequent normal uses of the composites. As the unmodified RF is used directly, no hazardous waste is produced during the fabrication process, combined with the low price, so, a facile and economic preparation pathway is given by using unmodified natural fiber to reinforce polymer and composites with good performance obtained.
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(ZK[2024]574)Anshun University PhD Fund Project(No.asxybsjj202302)+1 种基金the National Synchrotron Radiation Laboratory(NSRL,Hefei,China)(No.2021-HLS-PT-004163)Shanghai Synchrotron Radiation Facility(SSRF,Shanghai,China)(No.2018-NFPS-PT-002700).
文摘Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of great concern in many countries where silk is used.Hydrogen peroxide as a naturally occurring compound is an important indicator of detection in both biology and the environment.This study aims to develop a composite fiber with hydrogen peroxide-sensing properties using discarded silk materials.To achieve this goal,firstly,polydopamine(PDA)was used to encapsulate the ZnFe_(2)O_(4) NPs to achieve the improvement of dispersion,and then regenerated silk fibroin(RSF)and PDA@ZnFe_(2)O_(4)/RSF hybrid fibers are prepared by wet spinning.Research has shown that PDA@ZnFe_(2)O_(4)/RSF demonstrates exceptional sensitivity,selectivity,and stability in detecting hydrogen peroxide,while maintaining high mechanical strength.Furthermore,the complete hybridization of PDA@ZnFe_(2)O_(4) with silk fibroin not only results in the combination of the durability of silk fibroin and PDA@ZnFe_(2)O_(4)’s rigidity,ensuring a reliable service life,but also makes PDA@ZnFe_(2)O_(4)/RSF exhibit excellent catalytic activity and biocompatibility.Therefore,the composite fiber exhibits exceptional mechanical properties and reliable hydrogen peroxide sensing capabilities,making it a promising material for biological and medical applications.
文摘Fiber-reinforced soils have been of great interest to experimenters for building foundations’strength performance,time,and economy.This paper investigates the effects of water content and polypropylene fiber dosage and length on loess’s unconfined compressive strength(UCS)according to the central composite response surface design test procedure.The water content is 11%–25%,the mass ratio of fiber to soil is 0.1%–0.9%,and the fiber length ranges from 6–18 mm.The response surface method(RSM)developed full quadratic models of different variables with response values.After analysis of variance(ANOVA),the mathematical model developed in this study was statistically significant(p≤0.05)and applicable to the optimization process.The optimization results showed that the optimal water content values,fiber amount,and fiber length were 16.41%,0.579%,and 14.90 mm,respectively.The unconfined compressive strength of the optimized specimens was increased by 288.017 kPa.The research results can reference the design and construction of fiber-reinforced soil in practical projects such as road base engineering and foundation engineering.
基金supported by the National Natural Science Foundation of China (41731281,42071078)the National Key Basic Research Program of China (No.2012CB026104)Science and Technology Project of Qinghai,China (2021-GX-121).
文摘Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.
文摘Micro-coiled chiral carbon fibers are modified by nano-Ni. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to compare the composition and morphology of the unmodified and the modified fibers. The results show that electromagnetism parameters of the modified are different from those of the unmodified. After modification by nano-Ni, the micro-coiled chiral carbon fibers have decreased permittivity and electrical loss. The permeability and magnetic loss of the modified carbon fibers become larger than those of the unmodified ones. Moreover, the modification of unmodified chiral carbon fibers into the modified is much like changing hollow electric windings into those with magnetic cores inside. The modifier intensifies the cross polarization of the chiral carbon fibers and makes the permittivity and the permeability get closer to each other which improves the matching performance and enhances absorbability of coatings. In the range of 6-18 GHz, the reflectivity of the coating is 6-8dB and the bandwidth is 12 GHz. The area density of the coating is below 3 kg/m^2.
文摘From the environmental consideration,it would be very interesting to use natural fibers such as banana,jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials.Natural fibers have many advantages over synthetic ones.Polypropylene banana fiber composites(PPBC)are prepared using untreated and alkali-treated banana fibers at 10-25%by weight of the fiber loading.The thermal properties of polypropylene natural fiber composites are very important for technological uses.Thermogravimetric measurements show that the incorporation of banana fiber into PP enhances the thermal stability of composites containing treated fibers,in comparison with untreated fibers.A composite of biodegradable polypropylene(PP)reinforced with short banana natural fibers was prepared by melt blending followed by a hot press molding system.The thermal properties of matrix materials were studied using thermogravimetric analyzers TGA units.It is observed that the introduction of short banana fibers slightly improved the thermo oxidative stability of PP-banana composites.Physical and chemical changes occurred through dehydration,phase transition,molecular orientation,crystallinity disruption,oxidation and decomposition,and incorporation of several functional groups.Systematic investigations of the thermal behavior of polymers in gas,vacuum or inert atmosphere give the knowledge of how change takes place in polymers.To understand such changes thermogravimetric analysis(TGA)and thermal analysis(TG)were performed.It is observed reinforcement of short banana fiber leads to little improvement in the thermooxidative stability of PPBC.Due to the enhancement of thermo-mechanical properties,such composites may be used as building materials namely roof materials,selling materials and many other engineering applications.
基金Funded by the Key Project of Science and Technology Committee of Shanghai Municipality (No. 032112059 ).
文摘The influence of low volume fraction of polypropylene(PP) fibers on the tensile properties of normal and high strength concretes was studied. The experimental results indicate that the addition of PP fibers in concrete leads to a reduction in tensile strength during the age of 28 d. Whereas, after 28 days, there is a notable effect in tensile strength due to PP fibers restraining the formation and growth of microcracks in concrete, which improves the continuity and integrality of concrete structure, Thus, a low volume fraction of PP fibers is beneficial to enhancing the long-term tensile strength of concrete materials and improving the durability of concrete structures.
基金Funded by the Ministry of Science & Technology of China(No.2006BAJ04A04)
文摘A new form of foam cement was produced by mixing alkali-activated slag,clay,a small amount of polypropylene fibers with prepared foam during stirring.The preparation of the material is quite different from the normal one,which is produced just at room temperature and without baking.The fabrication of this energy-saving and low-price material can be favorable for lowering carbon emission by using recycled industrial wastes.Thermal conductivity of 0.116 W/(m·k),compressive strength of 3.30 MPa,flexural strength of 0.8 MPa and density of 453 kg/m3 can be achieved after 28 days aging.The hydration product is C-S-H with less Ca(OH)2,calcium aluminum and zeolite,which was characterized by X-ray diffraction(XRD) measurement.This prospective foam cement may be expected to be an excellent economical energy-saving building material.
基金The Hi-Tech Research and Development Program (863) of China (No. 2002AA601230)
文摘To improve its limiting flux and antifouling characteristics in a submerged membrane-bioreactor (SMBR) for wastewater treatment, polypropylene hollow fiber microporous membrane (PPHFMM) was surface-modified by the plasma-induced immobilization of poly (N-vinyl-2-pyrrolidone) (PVP) and the plasma treatment with different gases respectively. Attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the structural and morphological changes on the membrane surface. Water contact angle was measured by the sessile drop method. It was found that the water contact angle was 128.8, 72.3, 62.7, 74.4, 79.1, 86.3, and 71.3° for the nascent, PVP-immobilized, air, 02, Ar, CO2 and H2O plasma treated PPHFMM, respectively. The SMBR was operated at fixed transmembrane pressure to determine the limiting flux for the PPHFMM before and after surface modification. Results showed that the limiting flux appeared to be 103, 159, 117, 133, 136, 121 and 152 L/(m^2· h) for the nascent, PVP-immobilized, air, O2, At, CO2 and H2O plasma treated PPHFMM, respectively. After continuous operation for about 50 h in the SMBR, the antifouling characteristics were improved to some extent.
基金Funded by the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0912)。
文摘To improve the flame resistance of polypropylene(PP)/carbon fiber(CF)composite materials,triazine char-forming agent(TCA)was compounded with ammonium polyphosphate(APP)or modified APP(CS-APP)in a 2:1 ratio to prepare intumescent flame retardant(IFR)and the modified intumescent flame retardant(CS-IFR)in this paper.Flame retardancy and thermal degradation behaviors of the composites modified by IFR and CS-IFR were characterized by Fourier Transform Infrared(FTIR),contact angle measurement,oxygen index(OI),vertical burning tests(UL-94),thermogravimetric analyer(TGA),and thermogravimetric analyzer coupled with Fourier transform infrared(TG-FTIR).It was found that 25.0 phr of IFR and 24.0 phr of CS-IFR could improve the LOI value of PP/CF composites to 28.3%and 28.9%,respectively.At the same time,a UL-94 V-0 rating was achieved.The experimental results show that the IFR and CS-IFR prepared could effectively improve the flame retardancy and thermostability of PP/CF composites,and they would greatly expand the application range of PP/CF composite materials.
基金financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil(CAPES)-Finance Code 001.
文摘In aiming to obtain fibers with enhanced thermal and mechanical properties,graphene based textile fibers with 144 filaments were developed using an approach in which the PP/GnP(polypropylene/graphene nanoplatelets)nanocomposite was employed as conductive material in a fiber with circular cross-section geometry.The kinetics of thermal degradation was evaluated by the Broido method using thermogravimetric analysis(TGA).Activation energy was enhanced from 260.6 kJ·mol^-1 to 337.4 kJ·mol^-1 compared to the neat PP.GnP increased the thermal stability of the PP,slowing its degradation by thermal depolymerization.Furthermore,the degree of crystallization declined as the GnP content increased,reducing the tenacity of the yarn,but improving its elastic modulus from 91.9 to 95.9 cN/tex,being a promising alternative to produce smart textiles.In conclusion,it has been confirmed that GnP loading up to 1%(w/w)can be incorporated into polypropylene by melt spinning and that the resulting nanocomposite fibers are suitable for several applications in the textile industry.
基金Supported by the National Basic Research Program of China(2015CB655301)the Natural Science Foundation of Jiangsu Province(BK20150063)+1 种基金the Program of Excellent Innovation Teams of Jiangsu Higher Education Institutionsthe Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, for the first time, atomic layer deposition(ALD) is an effective strategy to conveniently upgrade the filtration performances of PPHF membranes. The chemical and morphological changes of the deposited PPHF membranes are characterized by spectral, compositional, microscopic characterizations and protein adsorption measurements. Al_2O_3 is distributed along the cross section of the PP hollow fibers, with decreasing concentration from the outer surface to the inner surface. The pore size of the outer surface can be easily turned by altering the ALD cycles. Interestingly, the hollow fibers become much more ductile after deposition as their elongation at break is increased more than six times after deposition with 100 cycles. The deposited membranes show simultaneously enhanced water permeance and retention after deposition with moderate ALD cycle numbers.For instance, after 50 ALD cycles a 17% increase in water permeance and one-fold increase in BSA rejection are observed. Moreover, the PP membranes exhibit improved fouling-resistance after ALD deposition.
文摘The article is focused on the influence of inorganic salts on the adsorption of cationically modified starch to fibers. Results show that low concentrations of inorganic salts usually affect the process of adsorption in a positive way. Adsorption efficiency at higher concentrations, however, depends on the type of inorganic salts as well as the sequence of adding inorganic salts and starch to paper suspension.
文摘Ultrafine polypropylene fibers are prepared frompolypropylene/easily hydro - degraded polyester (PP/EHDPET) blend fibers, in which file EHDPET compo-nent is degradable by treating with NaOH - H<sub>2</sub>O solu-tion. We investigated the morphology of PP/EHDPETblend fibers before and after stretching and alkalinehydrolysis. Then thermal behavior of the blend has alsobeen studied.