Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on ...Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.展开更多
Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in...Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system.展开更多
The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study emp...The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study employs multibody system transfer matrix method(MSTMM),to model MLRS.The use of this method provides effective and fast calculations of dynamic characteristics,initial disturbance and firing accuracy.Further,a new method of rapid extrapolation of ballistic trajectory of MLRS is proposed by using the position information of radar tests.That extrapolation point is then simulated and compared with the actual results,which demonstrates a good agreement.The closed?loop fire correction method is used to improve the firing accuracy of MLRS at low cost.展开更多
基金Project(51008188)supported by National Natural Science Foundation of ChinaProject(KLE-TJGE-B1302)supported by Key Laboratory Fund of Geotechnical and Underground Engineering of Ministry of Education,ChinaProject(SKLGDUEK1205)supported by Open Program of State Key Laboratory for Geomechanics and Deep Underground Engineering,China
文摘Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
基金This project is supported by National Natural Science Foundation of China (No.50375026)Provincial Fifteen Great Public Bidding Items of Jiangsu (No.BE2001068).
文摘Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system.
基金supported by the Na- tional Natural Science Foundation of China (No. 11472135)the Science Challenge Project (No. JCKY2016212A506- 0104)
文摘The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study employs multibody system transfer matrix method(MSTMM),to model MLRS.The use of this method provides effective and fast calculations of dynamic characteristics,initial disturbance and firing accuracy.Further,a new method of rapid extrapolation of ballistic trajectory of MLRS is proposed by using the position information of radar tests.That extrapolation point is then simulated and compared with the actual results,which demonstrates a good agreement.The closed?loop fire correction method is used to improve the firing accuracy of MLRS at low cost.