A new composite two component grout comprised of modified urea-formaldehyde resin and cement was formulated to take account of the advantages and disadvantages of both the cement grout and the chem- ical grout. The ne...A new composite two component grout comprised of modified urea-formaldehyde resin and cement was formulated to take account of the advantages and disadvantages of both the cement grout and the chem- ical grout. The new grout is designed for water blocking by reinforcing as well as seepage control by bore grouting. The A component consists of a modified urea-formaldehyde resin A component, some cement, and some water. The B component is an alkaline coagulant. An orthogonal test of four factors at three lev- els showed that gel time increased with increased water content and with urea-formaldehyde resin con- tent. Gel time decreased at increased levels of alkaline coagulant. The A component of this new composite grout is stable over time. A mixed cross-over test showed that as the volume ratio of A to B increases the gel time falls at first but then increases. The solid strength decreases with increasing levels of the B com- ponent. The solid strength increases over time and becomes stable by the 28th day after mixing. The vis- cosity increases with increasing levels of resin A component. The increase is exponential and may be fit to: μ = 8.162e0.0286x.展开更多
The selective water plugging agent was prepared by heating the blends of the polyacry-lamide inverse latex, modified urea formaldehyde resin, crosslinking agent and catalysts.The results show that using different type...The selective water plugging agent was prepared by heating the blends of the polyacry-lamide inverse latex, modified urea formaldehyde resin, crosslinking agent and catalysts.The results show that using different types of polymers and additives or changing in theirproportion of the blends, the gelling viscosity, starting point of gelling and other propertiesof the IPN can be controlled.展开更多
The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test....The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test. In comparison with the performance of epoxy resin modified asphalt mixtures, the performance of stone matrix asphalt mixtures (SMA10) was also investigated. The rutting test and composite beam fatigue test results show that the epoxy resin modified asphalt mixtures can improve permanent deformation and fatigue characteristics. They also show lower temperature susceptibility and greater resistance to moisture damage compared to the SMA10. Findings from the research indicate that the epoxy resin modified asphalt mixture provides an optional material for the pavement of long-span steel bridges in China due to profound performance and economic advantages.展开更多
The curing reaction and reaction mechanism of epoxy resin E-44, for which aromatic amine modified dicyandiamide was used as a curing reagent, were investigated by means of differential scanning calorimetry (DSC). Th...The curing reaction and reaction mechanism of epoxy resin E-44, for which aromatic amine modified dicyandiamide was used as a curing reagent, were investigated by means of differential scanning calorimetry (DSC). The results showed that the modified dicyandiamide had better curing characteristic than unmodified dicyandiamide for epoxy resin E-44, and the curing reaction could be carried out at moderate temperature. Apparent activation energy of the curing reaction was decreased appreciably from 123.829 kJ/mol to 61.550-64.405 kJ/mol, and reaction order was decreased from 0.941 to 0.896-0.900. Curing reaction mechanism also was discussed.展开更多
Acrylate modified polyurethane resin was first synthesized, and interpenetrated with unsaturated polyester resin to form IPNs and gradient IPNs which cured at room temperature. The polymerization process was traced by...Acrylate modified polyurethane resin was first synthesized, and interpenetrated with unsaturated polyester resin to form IPNs and gradient IPNs which cured at room temperature. The polymerization process was traced by an IR spectroscopy technique and the simultaneous interpenetrating techniques were determined. The morphology of these IPNs were estimated by TMA and TEM methods. The results indicated that large amount of interpenetrating and entanglement make T g linked up effectively, and domains between two phases can be in nanometre ranges, which changed with composition ratios. The mechanical properties results showed that IPNs varied from elastomeric to plastic materials. It was noteworthy that, with the introduction of modified groups and the formation of graft construction in IPNs, the miscibility in the systems was improved a lot. These further led to the improved mechanical properties of IPNs with elastomer reinforced and plasticizer toughened as well. The reinforced miscibility between the networks can apparently change mechanical property especially for the gradient ones when the materials are elongated.展开更多
A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating r...A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating resin for Pb2+ were studied by batch adsorption, and the adsorption process was analyzed from thermodynamics and kinetics aspects. The adsorption mechanism of Pb2+ on the modified D401 chelating resin was discussed by FT-IR spectrometry. Experimental results show that in the Pb2+ concentration range of 200-400 mg/L, the adsorption capacities of the modified D401 chelating resin for Pb2+ increase by 77%-129%, and Langmuir isothermal adsorption model is more suitable for the equilibrium adsorption data. Adsorption is an endothermic process that runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best pH value under adsorption condition is 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the adsorption capacity remains stable after five consecutive adsorption-desorption cycles. The maximal static saturated adsorption capacity of the resin is 206 mg/g at 333 K in the Pb2+ concentration range of 200-400 mg/L. The modified D401 chelating resin is an efficient adsorbent for the removal of Pb2+ from its single-metal ion solution.展开更多
As the important matrix material,epoxy resin has been widely used in the composites for various fields.On account of the poor toughness of epoxy resin limiting their suitability for advanced applications,considerable ...As the important matrix material,epoxy resin has been widely used in the composites for various fields.On account of the poor toughness of epoxy resin limiting their suitability for advanced applications,considerable interests have been conducted to modify the epoxy resin to meet the engineering requirements.In this study,the bio-based polyurethane(PU)modified resin was adopted to modify the pure bisphenol-A epoxy by blending method with various proportions.Aiming to illuminate the curing behavior,mechanical and thermal properties,the blended epoxy systems were characterized by viscosity-time analysis,dynamic mechanical analysis(DMA)at different frequencies and temperatures,mechanical tensile test,thermogravimetric analysis(TGA)and Fourier transform infrared(FT-IR)spectroscopy.The results indicated that the introduction of PU modified epoxy was found to significantly inhibit the viscosity growth rates especially when the content of PU modified epoxy resin is higher than 60%.Notwithstanding the dynamic modulus and T_(g)reduced with the increment of PU modified epoxy,remarkable increment on the elongation at break was found and the flexibility was greatly promoted with the introduction of PU modified epoxy.The proportion of PU modified epoxy in the blends should be put balance considerations to obtain optimal mechanical properties.TGA results and FTIR spectrum demonstrated that the addition of PU modified epoxy did not change the thermal decomposition mechanism and chemical reaction mechanism,but the addition of PU modified epoxy inhibits the curing reaction of epoxy resin by measured and calculated the damping temperature domainT from 35.7℃ to 48.9℃.展开更多
The modified petroleum resin emulsion prepared from the C9petroleum resin was modified with maleic anhydride.The effects of maleic rosin and maleic anhydride addition level,the modification time and the alkali liquor ...The modified petroleum resin emulsion prepared from the C9petroleum resin was modified with maleic anhydride.The effects of maleic rosin and maleic anhydride addition level,the modification time and the alkali liquor on the properties of the emulsion were discussed.The results showed that the optimum process conditions covered:a maleic anhydride mass fraction of 1.5%,a maleic rosin mass fraction of 10%,a KOH mass fraction of 1%,a petroleum resin modification temperature of 200℃,a petroleum resin modification duration of 3 h,and a modified petroleum resin emulsion/wax emulsion mixing ratio of 1:1.The particle size of modified petroleum resin emulsion prepared under these conditions was equal to 104.166μm.展开更多
Resin coated sand (RCS) with phenolic resin matrix can hardly be collapsed when it is used in Al-alloy casting. Adding collapsing agent and reducing the concentration of resin are solutions adopted by workers, but the...Resin coated sand (RCS) with phenolic resin matrix can hardly be collapsed when it is used in Al-alloy casting. Adding collapsing agent and reducing the concentration of resin are solutions adopted by workers, but these methods tend to reduce the initial strength of RCS. Synthesis of modified phenolic resin with direct-chain diacid DAn (/JS=6, where n means carbon amount) was studied here. The effects of the addition of modifying agent on molecular weight, gel time and softening point were investigated. Optimal addition of DAn (10% phenol) was obtained by testing the initial and retained flexural strengths of the modified resin. FT-IR spectra showed that carbonyl shifts to higher wave number. With the use of TG, SEM and strength loss curves, the relation between initial and retained strengths was analysed. Tests on the heated deformation curve, before and after resin modification, show that PF-DA10 has the characteristic of higher initial and retained strengths together.展开更多
In order to reduce the cost and to improve the low temperature bonding strength of phenol formaldehyde resin( PF),the lignin modified phenol formaldehyde resin( LPF) was synthesized using calcium lignosulfonate as...In order to reduce the cost and to improve the low temperature bonding strength of phenol formaldehyde resin( PF),the lignin modified phenol formaldehyde resin( LPF) was synthesized using calcium lignosulfonate as a partial replacement of phenol,and sodium hydroxide as catalyzer. Then the magnesia carbon bricks were prepared using the LPF as binder. Different process conditions of LPFs such as calcium lignosulfonate additions( 10%,20%,30%,40% and 50%,in mass,the same hereinafter),catalyzer additions( extra added,1%,2%,3%,4% and 5%) and reaction times( 1,1. 5,2,2. 5 and 3 h) were investigated. Effects of prepared LPFs on properties of magnesia carbon bricks( baked at 200 ℃ for 24 h) were researched in order to modify the synthesizing conditions of LPFs. Cold physical properties and hot modulus of rupture of magnesia carbon bricks bonded by LPF and by traditional PF after baked at 200 ℃ for 24 h and fired at 1 200 ℃ for 3 h were compared,respectively. The results show that the optimal synthesizing conditions of LPF for preparing magnesia carbon bricks are 30% calcium lignosulfonate,1% catalyzer,and 2 h reaction time. The magnesia carbon bricks bonded by the optimal LPF achieve:( 1) the bulk densities 2. 84 g · cm- 3and 2. 82g·cm- 3,apparent porosities 9. 6% and 14. 6%,moduli of rupture 17. 8 MPa and 6. 4 MPa,crushing strengths72. 3 MPa and 48. 7 MPa,after baked at 200 ℃ and1 200 ℃,respectively;( 2) the hot modulus of rupture7. 3 MPa after fired at 1 400 ℃. The above properties are better than those of the magnesia carbon brick bonded by PF.展开更多
Urea-formaldehyde (UF) resin is widely used as an adhesive for the manufacture of a range of wood and fiber based products. Although the microstructure of this resin has been examined at high resolution by field-emiss...Urea-formaldehyde (UF) resin is widely used as an adhesive for the manufacture of a range of wood and fiber based products. Although the microstructure of this resin has been examined at high resolution by field-emission scanning electron microscopy and atomic force microscopy, transmission electron microscopy (TEM) has thus far not been used, perhaps because of difficulties in ultrathin sectioning this resin in cured (polymerized) state. In the technical note presented here, a novel sample preparation method is described which enabled us to examine the microstructural morphology of UF resin by transmission electron microscopy in ultrathin sections, revealing the presence of spherical particles within the resin. Our initial attempt to ultrathin section the resin directly was not successful as it was too brittle to trim blocks for sectioning. Then, we developed a sample preparation technique that involved impregnation ofPinus radiatawood tissues with the UF resin, and then embedding of resin impregnated wood tissues with Spurr’s low viscosity embedding medium, which has been widely employed in plant and wood ultrastructure work. The TEM images illustrated and the information on the microstructural morphology of the UF resin presented are based on this novel sample preparation approach.展开更多
A new adsorbent (JN-01) was prepared by modifying resin NDA-1800 with nitro functional groups.The adsorption capacities of resins XAD-4,NDA-1800 and JN-01 were investigated,and the results indicated that the modified ...A new adsorbent (JN-01) was prepared by modifying resin NDA-1800 with nitro functional groups.The adsorption capacities of resins XAD-4,NDA-1800 and JN-01 were investigated,and the results indicated that the modified resin JN-01 was much better in adsorbing phenol,p-nitrophenol and p-cresol.The adsorption capacities of the resin JN-01 were higher than those of the resins XAD-4 and NDA-1800 within a temperature range of 283-323 K,which might be attributed to the higher surface area and the partial polarity o...展开更多
To evaluate the shear bond strength(SBS) and bond failure interface after the debonding of orthodontic brackets with a resin-modified glass ionomer cement(RMGIC) under six bonding conditions, 140 premolar teeth we...To evaluate the shear bond strength(SBS) and bond failure interface after the debonding of orthodontic brackets with a resin-modified glass ionomer cement(RMGIC) under six bonding conditions, 140 premolar teeth were randomly divided into seven groups. The brackets of all groups, except for control group, were bonded using a RMGIC. The teeth were debonded using a universal testing machine. The shear bond strength, adhesive remnant index (ARI) and enamel fracture were examined for each debonding. A significant difference existed in SBS under wet and dry conditions in two groups of Fuji Ortho LC. Different degree of enamel fracture was seen in groups of Fuji Ortho LC(dry/37% phosphoric acid treated) after debonding. Bond failed predominantly at the enamel-adhesive interface, except for phosphoric acid treated groups. The RMGIC achieve a clinically effective adhesion in orthodontics under different bonding conditions.展开更多
Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and ...Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and controlled stress flexural fatigue test are used to study the performance of asphalt mixtures modified by epoxy resin including high-temperature stability, low-temperature cracking-resistance, and fatigue cracking-resistance, which are served to evaluate the modification effect of epoxy resin of different contents. With the addition of epoxy resin, all the three performances are improved greatly. However, when the amount of epoxy resin added is over a certain value, the modification effect will be stable with no extra benefit detected. Finally, in terms of the properties of the three respects, 20%, 30%, 30% are given separately as the proposal adding contents.展开更多
Trimethylsilylated silica was synthesized. through hydrolytic condensation of tetraethoxysilane followed by trimethylsilylation. Rheological properties of the silicone resin with trimethylsilylated silica as modifier ...Trimethylsilylated silica was synthesized. through hydrolytic condensation of tetraethoxysilane followed by trimethylsilylation. Rheological properties of the silicone resin with trimethylsilylated silica as modifier were studied. It turned out that the particle size of silica was important to the rheological behavior of the modified resin. Trimethylsilylated silica of medium particle size shows the strongest tendency of forming physical network in the resin.展开更多
Good compatibility between waterborne epoxy resin(WER)modifier and styrene-butadiene rubber(SBR)latex modified asphalt emulsion(SBRE)is an essential premise for good pavement performance of WER and SBR latex composite...Good compatibility between waterborne epoxy resin(WER)modifier and styrene-butadiene rubber(SBR)latex modified asphalt emulsion(SBRE)is an essential premise for good pavement performance of WER and SBR latex compositely modified asphalt emulsion(WSAE).This study aims to explore the compatibility between WER modifier and SBRE.To achieve the goal,several WER modifiers produced by two methods were first selected to modify SBRE,thus the WSAEs were prepared.Next,storage stability and workability of the WSAEs themselves,and high-temperature performance,rheological behavior and temperature sensitivity of their evaporated residues were compared and evaluated via performing a series of experiments,respectively,thus the WER modifier possessing an optimal modification effect was recommended.Results show that the storage stability of WSAEs is sensitive to the amount of WERs.The incorporation of 1%WERs by the mass of SBRE improves the storage stability of SBRE,while WERs that exceed 1%weaken its storage stability.When the WERs reach 3%and 4%,the 5 d storage stability of prepared WSAEs will be beyond the limitation of specification.Incorporating WERs into SBRE negatively affects the workability of SBRE,and the workability of WSAEs is adversely influenced by the WERs content and the storage time.To ensure the construction,the WSAEs with 3%and 4%WERs should not be stored for more than 36 h and 48 h,respectively.The WERs effectively improve the high-temperature performance of SBRE residue,especially the 3%WERs.Besides,the WERs notably enhance the rheological property and thermal stability of SBRE residue.In contrast,the WER modifier produced by chemically modified method has a smaller adverse impact on the storage stability and workability of WSAE,and a larger enhancement on the high-temperature performance,rheological property and thermal stability of SBRE residue,which is thus recommended to modify SBRE.展开更多
Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of...Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of filler loading and surface modification on the electrical and thermal properties of the epoxy/MMT composites are investigated.Compared with the pure epoxy resin,the epoxy/MMT composite,whether MMT is surface-treated or not,shows low dielectric permittivity,low dielectric loss,and enhanced dielectric strength.The MMT in the epoxy/MMT composite also influences the thermal properties of the composite by improving the thermal conductivity and stability.Surface functionalization of MMT not only conduces to the better dispersion of the nanoparticles,but also significantly affects the electric and thermal properties of the hybrid by influencing the interfaces between MMT and epoxy resin.Improved interfaces are good for enhancing the electric and thermal properties of nanocomposites.What is more,the MMT modified with GPTMS rather thanγ-APTES is found to have greater influence on improving the interface between the MMT filler and polymer matrices,thus resulting in lower dielectric loss,lower electric conductivity,higher breakdown strength,lower thermal conductivity,and higher thermal stability.展开更多
Many factors that affect the flame resistance of the modified BMIsystem were studied, including the effect of different content ofP_4, C_24H_29Cl_21/ZnO_3B_2o_3·5H_2O and C_24H_29Cl_21/MoO_3 onOxygen Index of the...Many factors that affect the flame resistance of the modified BMIsystem were studied, including the effect of different content ofP_4, C_24H_29Cl_21/ZnO_3B_2o_3·5H_2O and C_24H_29Cl_21/MoO_3 onOxygen Index of the modified Bismaleimide resin. The thermalstability and mechanical properties of the cured BMI resin were alsomeasured. It showed that this new kind of modified bismaleimide resinhad nice fire resistance, excellent thermal stability and mechanicalproperties.展开更多
A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybr...A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.展开更多
基金the Graduate Developing Innovation Project of Jiangsu Province of China (No. CXZZ11-0306)the Major State Basic Research and Development Program of China (No.2007CB209400)
文摘A new composite two component grout comprised of modified urea-formaldehyde resin and cement was formulated to take account of the advantages and disadvantages of both the cement grout and the chem- ical grout. The new grout is designed for water blocking by reinforcing as well as seepage control by bore grouting. The A component consists of a modified urea-formaldehyde resin A component, some cement, and some water. The B component is an alkaline coagulant. An orthogonal test of four factors at three lev- els showed that gel time increased with increased water content and with urea-formaldehyde resin con- tent. Gel time decreased at increased levels of alkaline coagulant. The A component of this new composite grout is stable over time. A mixed cross-over test showed that as the volume ratio of A to B increases the gel time falls at first but then increases. The solid strength decreases with increasing levels of the B com- ponent. The solid strength increases over time and becomes stable by the 28th day after mixing. The vis- cosity increases with increasing levels of resin A component. The increase is exponential and may be fit to: μ = 8.162e0.0286x.
文摘The selective water plugging agent was prepared by heating the blends of the polyacry-lamide inverse latex, modified urea formaldehyde resin, crosslinking agent and catalysts.The results show that using different types of polymers and additives or changing in theirproportion of the blends, the gelling viscosity, starting point of gelling and other propertiesof the IPN can be controlled.
基金The National Natural Science Foundation of China(No50578038)the PhDPrograms Foundation of Ministry of Education of China (No20050286008)
文摘The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test. In comparison with the performance of epoxy resin modified asphalt mixtures, the performance of stone matrix asphalt mixtures (SMA10) was also investigated. The rutting test and composite beam fatigue test results show that the epoxy resin modified asphalt mixtures can improve permanent deformation and fatigue characteristics. They also show lower temperature susceptibility and greater resistance to moisture damage compared to the SMA10. Findings from the research indicate that the epoxy resin modified asphalt mixture provides an optional material for the pavement of long-span steel bridges in China due to profound performance and economic advantages.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2003AA305920)
文摘The curing reaction and reaction mechanism of epoxy resin E-44, for which aromatic amine modified dicyandiamide was used as a curing reagent, were investigated by means of differential scanning calorimetry (DSC). The results showed that the modified dicyandiamide had better curing characteristic than unmodified dicyandiamide for epoxy resin E-44, and the curing reaction could be carried out at moderate temperature. Apparent activation energy of the curing reaction was decreased appreciably from 123.829 kJ/mol to 61.550-64.405 kJ/mol, and reaction order was decreased from 0.941 to 0.896-0.900. Curing reaction mechanism also was discussed.
文摘Acrylate modified polyurethane resin was first synthesized, and interpenetrated with unsaturated polyester resin to form IPNs and gradient IPNs which cured at room temperature. The polymerization process was traced by an IR spectroscopy technique and the simultaneous interpenetrating techniques were determined. The morphology of these IPNs were estimated by TMA and TEM methods. The results indicated that large amount of interpenetrating and entanglement make T g linked up effectively, and domains between two phases can be in nanometre ranges, which changed with composition ratios. The mechanical properties results showed that IPNs varied from elastomeric to plastic materials. It was noteworthy that, with the introduction of modified groups and the formation of graft construction in IPNs, the miscibility in the systems was improved a lot. These further led to the improved mechanical properties of IPNs with elastomer reinforced and plasticizer toughened as well. The reinforced miscibility between the networks can apparently change mechanical property especially for the gradient ones when the materials are elongated.
基金Project(708049) supported by the Important Item Cultivation Foundation of Scientific Innovation Project of Colleges and Universities of China
文摘A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating resin for Pb2+ were studied by batch adsorption, and the adsorption process was analyzed from thermodynamics and kinetics aspects. The adsorption mechanism of Pb2+ on the modified D401 chelating resin was discussed by FT-IR spectrometry. Experimental results show that in the Pb2+ concentration range of 200-400 mg/L, the adsorption capacities of the modified D401 chelating resin for Pb2+ increase by 77%-129%, and Langmuir isothermal adsorption model is more suitable for the equilibrium adsorption data. Adsorption is an endothermic process that runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best pH value under adsorption condition is 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the adsorption capacity remains stable after five consecutive adsorption-desorption cycles. The maximal static saturated adsorption capacity of the resin is 206 mg/g at 333 K in the Pb2+ concentration range of 200-400 mg/L. The modified D401 chelating resin is an efficient adsorbent for the removal of Pb2+ from its single-metal ion solution.
基金The authors acknowledge the financial support of the National Natural Science Foundation of China(No.51908330)the Qilu Young Scholars Program of Shandong University,Natural Science Foundation of Shandong Province(CN)(No.ZR2020ME244),the Fundamental Research Funds of Shandong University(No.2020GN059)the Fundamental Research Funds for the Central Universities,CHD(No.300102210502)and Scientific Research Project of Shandong High-speed Group Co.,Ltd.,(No.SDGS-KJCX-2020-006-08).
文摘As the important matrix material,epoxy resin has been widely used in the composites for various fields.On account of the poor toughness of epoxy resin limiting their suitability for advanced applications,considerable interests have been conducted to modify the epoxy resin to meet the engineering requirements.In this study,the bio-based polyurethane(PU)modified resin was adopted to modify the pure bisphenol-A epoxy by blending method with various proportions.Aiming to illuminate the curing behavior,mechanical and thermal properties,the blended epoxy systems were characterized by viscosity-time analysis,dynamic mechanical analysis(DMA)at different frequencies and temperatures,mechanical tensile test,thermogravimetric analysis(TGA)and Fourier transform infrared(FT-IR)spectroscopy.The results indicated that the introduction of PU modified epoxy was found to significantly inhibit the viscosity growth rates especially when the content of PU modified epoxy resin is higher than 60%.Notwithstanding the dynamic modulus and T_(g)reduced with the increment of PU modified epoxy,remarkable increment on the elongation at break was found and the flexibility was greatly promoted with the introduction of PU modified epoxy.The proportion of PU modified epoxy in the blends should be put balance considerations to obtain optimal mechanical properties.TGA results and FTIR spectrum demonstrated that the addition of PU modified epoxy did not change the thermal decomposition mechanism and chemical reaction mechanism,but the addition of PU modified epoxy inhibits the curing reaction of epoxy resin by measured and calculated the damping temperature domainT from 35.7℃ to 48.9℃.
文摘The modified petroleum resin emulsion prepared from the C9petroleum resin was modified with maleic anhydride.The effects of maleic rosin and maleic anhydride addition level,the modification time and the alkali liquor on the properties of the emulsion were discussed.The results showed that the optimum process conditions covered:a maleic anhydride mass fraction of 1.5%,a maleic rosin mass fraction of 10%,a KOH mass fraction of 1%,a petroleum resin modification temperature of 200℃,a petroleum resin modification duration of 3 h,and a modified petroleum resin emulsion/wax emulsion mixing ratio of 1:1.The particle size of modified petroleum resin emulsion prepared under these conditions was equal to 104.166μm.
文摘Resin coated sand (RCS) with phenolic resin matrix can hardly be collapsed when it is used in Al-alloy casting. Adding collapsing agent and reducing the concentration of resin are solutions adopted by workers, but these methods tend to reduce the initial strength of RCS. Synthesis of modified phenolic resin with direct-chain diacid DAn (/JS=6, where n means carbon amount) was studied here. The effects of the addition of modifying agent on molecular weight, gel time and softening point were investigated. Optimal addition of DAn (10% phenol) was obtained by testing the initial and retained flexural strengths of the modified resin. FT-IR spectra showed that carbonyl shifts to higher wave number. With the use of TG, SEM and strength loss curves, the relation between initial and retained strengths was analysed. Tests on the heated deformation curve, before and after resin modification, show that PF-DA10 has the characteristic of higher initial and retained strengths together.
基金New Century Excellent Talents Program of Ministry of Education ( NCET - 09 - 0137 )The open foundation of the State Key Laboratory of Refractories and Metallurgy ( 2014QN17 )
文摘In order to reduce the cost and to improve the low temperature bonding strength of phenol formaldehyde resin( PF),the lignin modified phenol formaldehyde resin( LPF) was synthesized using calcium lignosulfonate as a partial replacement of phenol,and sodium hydroxide as catalyzer. Then the magnesia carbon bricks were prepared using the LPF as binder. Different process conditions of LPFs such as calcium lignosulfonate additions( 10%,20%,30%,40% and 50%,in mass,the same hereinafter),catalyzer additions( extra added,1%,2%,3%,4% and 5%) and reaction times( 1,1. 5,2,2. 5 and 3 h) were investigated. Effects of prepared LPFs on properties of magnesia carbon bricks( baked at 200 ℃ for 24 h) were researched in order to modify the synthesizing conditions of LPFs. Cold physical properties and hot modulus of rupture of magnesia carbon bricks bonded by LPF and by traditional PF after baked at 200 ℃ for 24 h and fired at 1 200 ℃ for 3 h were compared,respectively. The results show that the optimal synthesizing conditions of LPF for preparing magnesia carbon bricks are 30% calcium lignosulfonate,1% catalyzer,and 2 h reaction time. The magnesia carbon bricks bonded by the optimal LPF achieve:( 1) the bulk densities 2. 84 g · cm- 3and 2. 82g·cm- 3,apparent porosities 9. 6% and 14. 6%,moduli of rupture 17. 8 MPa and 6. 4 MPa,crushing strengths72. 3 MPa and 48. 7 MPa,after baked at 200 ℃ and1 200 ℃,respectively;( 2) the hot modulus of rupture7. 3 MPa after fired at 1 400 ℃. The above properties are better than those of the magnesia carbon brick bonded by PF.
文摘Urea-formaldehyde (UF) resin is widely used as an adhesive for the manufacture of a range of wood and fiber based products. Although the microstructure of this resin has been examined at high resolution by field-emission scanning electron microscopy and atomic force microscopy, transmission electron microscopy (TEM) has thus far not been used, perhaps because of difficulties in ultrathin sectioning this resin in cured (polymerized) state. In the technical note presented here, a novel sample preparation method is described which enabled us to examine the microstructural morphology of UF resin by transmission electron microscopy in ultrathin sections, revealing the presence of spherical particles within the resin. Our initial attempt to ultrathin section the resin directly was not successful as it was too brittle to trim blocks for sectioning. Then, we developed a sample preparation technique that involved impregnation ofPinus radiatawood tissues with the UF resin, and then embedding of resin impregnated wood tissues with Spurr’s low viscosity embedding medium, which has been widely employed in plant and wood ultrastructure work. The TEM images illustrated and the information on the microstructural morphology of the UF resin presented are based on this novel sample preparation approach.
基金supported by the National Nature Science Fund (No.50778088)Resources Special Subject of National High Technology Research & Development Project (863 Project No.2006AA06Z383),China.
文摘A new adsorbent (JN-01) was prepared by modifying resin NDA-1800 with nitro functional groups.The adsorption capacities of resins XAD-4,NDA-1800 and JN-01 were investigated,and the results indicated that the modified resin JN-01 was much better in adsorbing phenol,p-nitrophenol and p-cresol.The adsorption capacities of the resin JN-01 were higher than those of the resins XAD-4 and NDA-1800 within a temperature range of 283-323 K,which might be attributed to the higher surface area and the partial polarity o...
文摘To evaluate the shear bond strength(SBS) and bond failure interface after the debonding of orthodontic brackets with a resin-modified glass ionomer cement(RMGIC) under six bonding conditions, 140 premolar teeth were randomly divided into seven groups. The brackets of all groups, except for control group, were bonded using a RMGIC. The teeth were debonded using a universal testing machine. The shear bond strength, adhesive remnant index (ARI) and enamel fracture were examined for each debonding. A significant difference existed in SBS under wet and dry conditions in two groups of Fuji Ortho LC. Different degree of enamel fracture was seen in groups of Fuji Ortho LC(dry/37% phosphoric acid treated) after debonding. Bond failed predominantly at the enamel-adhesive interface, except for phosphoric acid treated groups. The RMGIC achieve a clinically effective adhesion in orthodontics under different bonding conditions.
文摘Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and controlled stress flexural fatigue test are used to study the performance of asphalt mixtures modified by epoxy resin including high-temperature stability, low-temperature cracking-resistance, and fatigue cracking-resistance, which are served to evaluate the modification effect of epoxy resin of different contents. With the addition of epoxy resin, all the three performances are improved greatly. However, when the amount of epoxy resin added is over a certain value, the modification effect will be stable with no extra benefit detected. Finally, in terms of the properties of the three respects, 20%, 30%, 30% are given separately as the proposal adding contents.
文摘Trimethylsilylated silica was synthesized. through hydrolytic condensation of tetraethoxysilane followed by trimethylsilylation. Rheological properties of the silicone resin with trimethylsilylated silica as modifier were studied. It turned out that the particle size of silica was important to the rheological behavior of the modified resin. Trimethylsilylated silica of medium particle size shows the strongest tendency of forming physical network in the resin.
基金funded by the National Natural Science Foundation of China(NSFC)under Grant No.211021180360the Transportation Science and Technology in Shaanxi Province under Grant No.KY17-02.
文摘Good compatibility between waterborne epoxy resin(WER)modifier and styrene-butadiene rubber(SBR)latex modified asphalt emulsion(SBRE)is an essential premise for good pavement performance of WER and SBR latex compositely modified asphalt emulsion(WSAE).This study aims to explore the compatibility between WER modifier and SBRE.To achieve the goal,several WER modifiers produced by two methods were first selected to modify SBRE,thus the WSAEs were prepared.Next,storage stability and workability of the WSAEs themselves,and high-temperature performance,rheological behavior and temperature sensitivity of their evaporated residues were compared and evaluated via performing a series of experiments,respectively,thus the WER modifier possessing an optimal modification effect was recommended.Results show that the storage stability of WSAEs is sensitive to the amount of WERs.The incorporation of 1%WERs by the mass of SBRE improves the storage stability of SBRE,while WERs that exceed 1%weaken its storage stability.When the WERs reach 3%and 4%,the 5 d storage stability of prepared WSAEs will be beyond the limitation of specification.Incorporating WERs into SBRE negatively affects the workability of SBRE,and the workability of WSAEs is adversely influenced by the WERs content and the storage time.To ensure the construction,the WSAEs with 3%and 4%WERs should not be stored for more than 36 h and 48 h,respectively.The WERs effectively improve the high-temperature performance of SBRE residue,especially the 3%WERs.Besides,the WERs notably enhance the rheological property and thermal stability of SBRE residue.In contrast,the WER modifier produced by chemically modified method has a smaller adverse impact on the storage stability and workability of WSAE,and a larger enhancement on the high-temperature performance,rheological property and thermal stability of SBRE residue,which is thus recommended to modify SBRE.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21806129,51872238,51407134,and 51521065)the China Postdoctoral Science Foundation(Grant No.2016M590619)+3 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2016EEQ28)the State Key Laboratory of Electrical Insulation and Power Equipment,China(Grant No.EIPE14107)the Fundamental Research Funds for the Central Universities,China(Grant No.3102018zy045)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2017JQ5116)
文摘Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of filler loading and surface modification on the electrical and thermal properties of the epoxy/MMT composites are investigated.Compared with the pure epoxy resin,the epoxy/MMT composite,whether MMT is surface-treated or not,shows low dielectric permittivity,low dielectric loss,and enhanced dielectric strength.The MMT in the epoxy/MMT composite also influences the thermal properties of the composite by improving the thermal conductivity and stability.Surface functionalization of MMT not only conduces to the better dispersion of the nanoparticles,but also significantly affects the electric and thermal properties of the hybrid by influencing the interfaces between MMT and epoxy resin.Improved interfaces are good for enhancing the electric and thermal properties of nanocomposites.What is more,the MMT modified with GPTMS rather thanγ-APTES is found to have greater influence on improving the interface between the MMT filler and polymer matrices,thus resulting in lower dielectric loss,lower electric conductivity,higher breakdown strength,lower thermal conductivity,and higher thermal stability.
基金Funded by the Ministry of National Defense Industry.
文摘Many factors that affect the flame resistance of the modified BMIsystem were studied, including the effect of different content ofP_4, C_24H_29Cl_21/ZnO_3B_2o_3·5H_2O and C_24H_29Cl_21/MoO_3 onOxygen Index of the modified Bismaleimide resin. The thermalstability and mechanical properties of the cured BMI resin were alsomeasured. It showed that this new kind of modified bismaleimide resinhad nice fire resistance, excellent thermal stability and mechanicalproperties.
文摘A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.