期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
Prediction of NO_(x)concentration using modular long short-term memory neural network for municipal solid waste incineration 被引量:2
1
作者 Haoshan Duan Xi Meng +1 位作者 Jian Tang Junfei Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期46-57,共12页
Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emis... Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emission controlling.In this study,a modular long short-term memory(M-LSTM)network is developed to design an efficient prediction model for NO_(x)concentration.First,the fuzzy C means(FCM)algorithm is utilized to divide the task into several sub-tasks,aiming to realize the divide-and-conquer ability for complex task.Second,long short-term memory(LSTM)neural networks are applied to tackle corresponding sub-tasks,which can improve the prediction accuracy of the sub-networks.Third,a cooperative decision strategy is designed to guarantee the generalization performance during the testing or application stage.Finally,after being evaluated by a benchmark simulation,the proposed method is applied to a real MSWI process.And the experimental results demonstrate the considerable prediction ability of the M-LSTM network. 展开更多
关键词 Municipal solid waste incineration NO_(x)concentration prediction modular neural network Model
下载PDF
Inverse stochastic resonance in modular neural network with synaptic plasticity
2
作者 于永涛 杨晓丽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期45-52,共8页
This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s... This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s synaptic learning rule is employed to characterize synaptic plasticity in this network. Meanwhile, the effects of synaptic plasticity on the ISR dynamics are investigated. Through numerical simulations, it is found that the mean firing rate curve under the influence of bounded noise has an inverted bell-like shape, which implies the appearance of ISR. Moreover, synaptic plasticity with smaller learning rate strengthens this ISR phenomenon, while synaptic plasticity with larger learning rate weakens or even destroys it. On the other hand, the mean firing rate curve under the influence of time delay is found to exhibit a decaying oscillatory process, which represents the emergence of multiple ISR. However, the multiple ISR phenomenon gradually weakens until it disappears with increasing noise amplitude. On the same time, synaptic plasticity with smaller learning rate also weakens this multiple ISR phenomenon, while synaptic plasticity with larger learning rate strengthens it. Furthermore, we find that changes of synaptic learning rate can induce the emergence of ISR phenomenon. We hope these obtained results would provide new insights into the study of ISR in neuroscience. 展开更多
关键词 inverse stochastic resonance synaptic plasticity modular neural network
下载PDF
MNN-XSS:Modular Neural Network Based Approach for XSS Attack Detection
3
作者 Ahmed Abdullah Alqarni Nizar Alsharif +3 位作者 Nayeem Ahmad Khan Lilia Georgieva Eric Pardade Mohammed Y.Alzahrani 《Computers, Materials & Continua》 SCIE EI 2022年第2期4075-4085,共11页
The rapid growth and uptake of network-based communication technologies have made cybersecurity a significant challenge as the number of cyber-attacks is also increasing.A number of detection systems are used in an at... The rapid growth and uptake of network-based communication technologies have made cybersecurity a significant challenge as the number of cyber-attacks is also increasing.A number of detection systems are used in an attempt to detect known attacks using signatures in network traffic.In recent years,researchers have used different machine learning methods to detect network attacks without relying on those signatures.The methods generally have a high false-positive rate which is not adequate for an industry-ready intrusion detection product.In this study,we propose and implement a new method that relies on a modular deep neural network for reducing the false positive rate in the XSS attack detection system.Experiments were performed using a dataset consists of 1000 malicious and 10000 benign sample.The model uses 50 features selected by using Pearson correlation method and will be used in the detection and preventions of XSS attacks.The results obtained from the experiments depict improvement in the detection accuracy as high as 99.96%compared to other approaches. 展开更多
关键词 CYBERSECURITY XSS deep learning modular neural network
下载PDF
A Short-Term Climate Prediction Model Based on a Modular Fuzzy Neural Network 被引量:6
4
作者 金龙 金健 姚才 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第3期428-435,共8页
In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the ... In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the self-adaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78%, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28% respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN) model, does not occur, indicating a better practical application potential of the MFNN model. 展开更多
关键词 modular fuzzy neural network short-term climate prediction flood season
下载PDF
Aeromagnetic Compensation Algorithm Based on Levenberg-Marquard Neural Network
5
作者 Li LIU Qingfeng XU +3 位作者 Hui GU Lei ZHOU Zhenfu LIU Lili CAO 《Journal of Geodesy and Geoinformation Science》 2021年第4期74-83,共10页
The magnetic compensation of aeromagnetic survey is an important calibration work,which has a great impact on the accuracy of measurement.In an aeromagnetic survey flight,measurement data consists of diurnal variation... The magnetic compensation of aeromagnetic survey is an important calibration work,which has a great impact on the accuracy of measurement.In an aeromagnetic survey flight,measurement data consists of diurnal variation,aircraft maneuver interference field,and geomagnetic field.In this paper,appropriate physical features and the modular feedforward neural network(MFNN)with Levenberg-Marquard(LM)back propagation algorithm are adopted to supervised learn fluctuation of measuring signals and separate the interference magnetic field from the measurement data.LM algorithm is a kind of least square estimation algorithm of nonlinear parameters.It iteratively calculates the jacobian matrix of error performance and the adjustment value of gradient with the regularization method.LM algorithm’s computing efficiency is high and fitting error is very low.The fitting performance and the compensation accuracy of LM-MFNN algorithm are proved to be much better than those of TOLLES-LAWSON(T-L)model with the linear least square(LS)solution by fitting experiments with five different aeromagnetic surveys’data. 展开更多
关键词 modular feedforward neural network aeromagnetic compensation LM back propagation algorithm
下载PDF
基于短时傅里叶变换和深度网络的模块化多电平换流器子模块IGBT开路故障诊断 被引量:1
6
作者 朱琴跃 于逸尘 +2 位作者 占岩文 李杰 华润恺 《电工技术学报》 EI CSCD 北大核心 2024年第12期3840-3854,共15页
针对现有模块化多电平换流器(MMC)子模块故障诊断过程中所需传感器较多、测量干扰较大等问题,提出一种基于深度学习的MMC子模块IGBT开路故障诊断方法。在对MMC子模块开路故障特征进行分析的基础上,利用短时傅里叶变换(STFT)提取桥臂电... 针对现有模块化多电平换流器(MMC)子模块故障诊断过程中所需传感器较多、测量干扰较大等问题,提出一种基于深度学习的MMC子模块IGBT开路故障诊断方法。在对MMC子模块开路故障特征进行分析的基础上,利用短时傅里叶变换(STFT)提取桥臂电压信号的谐波分量信息作为故障诊断所需的特征参数。将所得到的特征参数进行处理后构建故障诊断样本,在通过深度置信网络实现故障类型快速检测的基础上,依据不同故障类型,构建多个基于卷积神经网络的故障定位网络,进而实现开路故障的检测与定位。通过129电平的MMC系统仿真模型和降功率的MMC实验系统搭建,对该文所提方法进行了验证。仿真和实验结果表明,所提故障诊断方法可以在减少传感器数量的基础上实现子模块开路故障的诊断,提高系统的可靠性。 展开更多
关键词 模块化多电平换流器 开路故障诊断 短时傅里叶变换 卷积神经网络
下载PDF
基于注意力模块化神经网络的城市固废焚烧过程氮氧化物排放预测 被引量:2
7
作者 蒙西 王岩 +1 位作者 孙子健 乔俊飞 《化工学报》 EI CSCD 北大核心 2024年第2期593-603,共11页
氮氧化物(nitrogen oxides,NO_(x))浓度的实时精准检测是实现脱硝过程闭环控制的前提,对提高城市固废焚烧(municipal solid waste incineration,MSWI)过程脱硝效率具有重要意义。为此,提出了一种基于注意力模块化神经网络(attention mod... 氮氧化物(nitrogen oxides,NO_(x))浓度的实时精准检测是实现脱硝过程闭环控制的前提,对提高城市固废焚烧(municipal solid waste incineration,MSWI)过程脱硝效率具有重要意义。为此,提出了一种基于注意力模块化神经网络(attention modular neural network,AMNN)的MSWI过程NO_(x)排放预测方法。首先,模拟脑网络“分而治之”处理复杂任务的特性,利用模糊C均值(fuzzy C-means,FCM)聚类算法将待预测任务划分为多个子任务,从而降低预测任务复杂度;其次,针对各子任务,设计一种自组织模糊神经网络(self-organizing fuzzy neural network,SOFNN)构建子模型,通过神经元增删机制和二阶学习算法提高子模型的学习效率和学习精度;然后,提出了一种基于注意力机制的子模型整合策略,进一步提高预测模型的泛化性能;最后,通过基准实验Mackey-Glass时间序列预测和北京某MSWI厂实际数据验证了AMNN的可行性和有效性。 展开更多
关键词 城市固废焚烧 模块化神经网络 注意力机制 NOx排放预测
下载PDF
基于MNN神经网络的液压系统油温的PWM自学习控制 被引量:8
8
作者 孙薇 何洪 周恩涛 《中国机械工程》 EI CAS CSCD 北大核心 1998年第7期44-47,共4页
基于PWM脉冲宽度调节原理,提出开关式冷却系统的PWM控制策略,降低了冷却系统成本,同时提高了系统可靠性。利用MNN动态回归网络提出滞后复杂系统的自学习控制算法,用于液压系统油温的高精度控制,取得令人满意的控制效果。
关键词 mnn神经网络 自学习控制 温度控制 液压系统
下载PDF
基于模糊Modular神经网络的官厅水库及邻区的地震危险性估计 被引量:4
9
作者 武安绪 吴培稚 张丽芳 《西北地震学报》 CSCD 北大核心 2005年第z1期65-71,共7页
首先介绍了模糊Modular神经网络的原理、建模方法与仿真实验,然后利用该方法把一些常用的地震学指标作为神经网络的输入,未来50年最大震级则作为网络的期望输出,对官厅水库及邻区的地震活动进行学习与最大震级序列建模,进行危险性预测... 首先介绍了模糊Modular神经网络的原理、建模方法与仿真实验,然后利用该方法把一些常用的地震学指标作为神经网络的输入,未来50年最大震级则作为网络的期望输出,对官厅水库及邻区的地震活动进行学习与最大震级序列建模,进行危险性预测。通过分析,认为该方法在一定程度上具有学习、建模与外推预测泛化能力,具有很好的中长期地震危险性预测效果,可以作为中长期地震危险性分析的工具。 展开更多
关键词 官厅水库及邻区 模糊modular神经网络 地震危险性预测
下载PDF
基于KFCM-MNN并联式混合动力汽车能量管理策略 被引量:2
10
作者 孔慧芳 朱翔 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第4期485-489,共5页
为了提高并联式混合动力汽车的燃油经济性,文章提出了一种基于核模糊c聚类(kernel fuzzy cmeans clustering,KFCM)的多神经网络(multi-neural network,MNN)能量管理设计方法。采用动态规划全局优化离线仿真得到全局最优解,使用KFCM算法... 为了提高并联式混合动力汽车的燃油经济性,文章提出了一种基于核模糊c聚类(kernel fuzzy cmeans clustering,KFCM)的多神经网络(multi-neural network,MNN)能量管理设计方法。采用动态规划全局优化离线仿真得到全局最优解,使用KFCM算法对全局最优解数据集合按照车辆运行模式作聚类划分,针对每一个聚类建立局部神经网络。训练后的MNN模型结构根据实时工况,将多个局部神经网络的输出联结作为能量管理策略的输出,以实现发动机和电机转矩的实时优化分配。仿真结果表明,基于KFCM-MNN的能量管理策略,具有对动态规划能量管理策略很好的学习模拟能力,是一种准最优的控制策略。 展开更多
关键词 并联式混合动力汽车 动态规划 多神经网络(mnn) 核模糊c聚类(KFCM) 能量管理策略
下载PDF
基于改进MNN的森林健康评价方法研究 被引量:3
11
作者 方舟 王霓虹 《安徽农业科学》 CAS 2014年第16期5292-5294,共3页
为了更好地支持森林的可持续经营,探讨了森林健康评价方法。与传统的单一人工神经网络相比,集成神经网络(Modular Neural Networks,MNN)在解决复杂分类问题时更加有效,因此利用MNN作为森林健康评价的具体方法。此外,常被用来训练神经网... 为了更好地支持森林的可持续经营,探讨了森林健康评价方法。与传统的单一人工神经网络相比,集成神经网络(Modular Neural Networks,MNN)在解决复杂分类问题时更加有效,因此利用MNN作为森林健康评价的具体方法。此外,常被用来训练神经网络的反向传播(Back Propagation,BP)算法存在收敛速度慢且易陷入局部极小值等不足。为了解决这一问题,将具有极强全局寻优能力的人工蜂群(Artificial Bee Colony,ABC)算法与BP算法相结合,形成一种混合ABC-BP算法的改进MNN模型,并将其用作构成MNN的单一神经网络的学习算法。通过试验对比分析,验证了改进MNN模型的有效性。 展开更多
关键词 森林健康评价 集成神经网络 人工蜂群
下载PDF
基于改进MNN光伏发电功率预测模型 被引量:4
12
作者 王大虎 贾倩 林红阳 《电子设计工程》 2018年第12期1-5,共5页
针对光伏发电的不确定性导致频率波动和电力系统不稳定带来的不利影响,本文采用改进模块化神经网络(MNN)对光伏发电功率进行预测,即利用回声状态网络代替MNN中原训练子模块模型。首先按季节输入历史数据;再经任务分解模块将数据分为不... 针对光伏发电的不确定性导致频率波动和电力系统不稳定带来的不利影响,本文采用改进模块化神经网络(MNN)对光伏发电功率进行预测,即利用回声状态网络代替MNN中原训练子模块模型。首先按季节输入历史数据;再经任务分解模块将数据分为不同天气类型的子数据,与预测日及预测日前一日的平均温度作为子模型输入样本;利用回声状态网络作为预测子模型,对相应输入样本训练与发电功率预测;最后经整合输出模块输出预测结果。结果表明,此方法较本文选用的其他方法预测精度提高28%以上。 展开更多
关键词 模块化神经网络 回声状态网络 电力系统 光伏发电功率预测 天气类型
下载PDF
改进的模糊Modular神经网络在既有建筑可靠性鉴定中的应用 被引量:3
13
作者 张克纯 陆洲导 项凯 《结构工程师》 2007年第6期37-42,共6页
在Takagi-Sugeno模糊逻辑系统的基础上,提出了改进的模糊Modular神经网络模型(IF-MNN),并将该模型应用于既有建筑的可靠性鉴定。改进的模型是将传统的模糊Modular神经网络模型中的单输出改进为多输出。这种改进的多输入多输出的模糊Modu... 在Takagi-Sugeno模糊逻辑系统的基础上,提出了改进的模糊Modular神经网络模型(IF-MNN),并将该模型应用于既有建筑的可靠性鉴定。改进的模型是将传统的模糊Modular神经网络模型中的单输出改进为多输出。这种改进的多输入多输出的模糊Modular神经网络模型具有预测性能好、训练学习速度快的优点,它的系统门网络采用模糊C均值聚类算法代替K-means算法,专家网络的训练中引进了先进的Levenberg-Marquardt算法。在应用改进的模糊Modular神经网络模型对既有建筑进行可靠性鉴定的过程中,综合考虑了各主要因素对既有建筑可靠性鉴定等级的影响,并将经量化处理的影响因素作为网络的外部输入,将网络计算得到的4个输出值分别作为样本对应于不同可靠性等级的隶属度,建筑可靠性鉴定的最终评判等级为最大隶属度所对应的等级。训练和预测样本的计算结果证明了改进的模糊Modular神经网络模型在既有建筑可靠性鉴定中应用的可行性和有效性。 展开更多
关键词 modular神经网络 可靠性鉴定 既有建筑 模糊C均值 LEVENBERG-MARQUARDT 算法
下载PDF
一类区间时滞忆阻神经网络的稳定性控制
14
作者 赵一飞 曹梦亭 +2 位作者 褚佳奕 崔铠亭 章联生 《北京石油化工学院学报》 2024年第2期60-68,共9页
鉴于忆阻神经网络(memristive neural network,MNN)的数学模型是一种右端不连续的微分方程,经典的微分方程理论不再适用。借助微分包含理论和Filippov解的框架,将这一神经网络系统转化为通常的神经网络系统,并建立了时滞一次函数形式的... 鉴于忆阻神经网络(memristive neural network,MNN)的数学模型是一种右端不连续的微分方程,经典的微分方程理论不再适用。借助微分包含理论和Filippov解的框架,将这一神经网络系统转化为通常的神经网络系统,并建立了时滞一次函数形式的新型李雅普诺夫-克拉索夫斯基泛函(Lyapunov-Krasovskii functional,LKF),运用积分不等式和倒数凸组合不等式估计其导数,得到了该系统渐近稳定的充分条件并以线性矩阵不等式(linear matrix inequalities,LMIs)形式给出,便于用MATLAB软件验证。数值仿真结果表明,所得到结论正确且可实现。 展开更多
关键词 忆阻神经网络 全局渐进稳定 时变时滞 线性矩阵不等式
下载PDF
一种模糊Modular神经网络模型及其应用 被引量:1
15
作者 于百胜 黄文虎 《强度与环境》 2002年第3期43-46,63,共5页
将神经网络模糊系统与模糊C均值聚类法相结合 ,对模糊Modular神经网络进行研究 ,提出了该模糊神经网络模型的多输出结构及其学习算法 ,据此开发了模糊神经网络诊断系统 ,并将其用于某电源分系统的诊断分析 ,运行的结果表明 。
关键词 神经网络模型 模糊神经网络 模糊C平均法 modular网络
下载PDF
Synchronization transition of a modular neural network containing subnetworks of different scales 被引量:1
16
作者 Weifang HUANG Lijian YANG +2 位作者 Xuan ZHAN Ziying FU Ya JIA 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第10期1458-1470,共13页
Time delay and coupling strength are important factors that affect the synchronization of neural networks.In this study,a modular neural network containing subnetworks of different scales was constructed using the Hod... Time delay and coupling strength are important factors that affect the synchronization of neural networks.In this study,a modular neural network containing subnetworks of different scales was constructed using the Hodgkin–Huxley(HH)neural model;i.e.,a small-scale random network was unidirectionally connected to a large-scale small-world network through chemical synapses.Time delays were found to induce multiple synchronization transitions in the network.An increase in coupling strength also promoted synchronization of the network when the time delay was an integer multiple of the firing period of a single neuron.Considering that time delays at different locations in a modular network may have different effects,we explored the influence of time delays within each subnetwork and between two subnetworks on the synchronization of modular networks.We found that when the subnetworks were well synchronized internally,an increase in the time delay within both subnetworks induced multiple synchronization transitions of their own.In addition,the synchronization state of the small-scale network affected the synchronization of the large-scale network.It was surprising to find that an increase in the time delay between the two subnetworks caused the synchronization factor of the modular network to vary periodically,but it had essentially no effect on the synchronization within the receiving subnetwork.By analyzing the phase difference between the two subnetworks,we found that the mechanism of the periodic variation of the synchronization factor of the modular network was the periodic variation of the phase difference.Finally,the generality of the results was demonstrated by investigating modular networks at different scales. 展开更多
关键词 Hodgkin-Huxley neuron modular neural network SUBnetwork SYNCHRONIZATION Transmission delay
原文传递
基于自组织模块化神经网络的污水处理过程出水参数预测
17
作者 郭鑫 李文静 乔俊飞 《化工学报》 EI CSCD 北大核心 2024年第9期3242-3254,共13页
针对城市污水处理过程关键出水水质一些参数难以在线测量的问题,提出了一种基于经验模态分解(EMD)的自组织模块化神经网络(MNN)出水参数软测量模型。首先设计一种基于EMD的任务分解方法,将复杂的时间序列分解为若干子序列,并采用样本熵... 针对城市污水处理过程关键出水水质一些参数难以在线测量的问题,提出了一种基于经验模态分解(EMD)的自组织模块化神经网络(MNN)出水参数软测量模型。首先设计一种基于EMD的任务分解方法,将复杂的时间序列分解为若干子序列,并采用样本熵和欧氏距离分别计算子序列的复杂性及相似性,自适应调整子网络模块。然后针对子网络模块初始结构难以确定的问题提出一种前馈神经网络的结构自组织算法,实现子网络模型根据分配的子任务动态调整自身网络结构,更有效地对各子序列进行预测。最后通过基准时间序列预测和实际污水处理厂中出水水质参数检测实验验证了所提出的模型具有较好的预测精度和自适应性。 展开更多
关键词 经验模态分解 动态建模 模块化神经网络 时间序列预测 废水
下载PDF
低载波比调制下的MMC-UPFC电容电压减频效应
18
作者 陈志军 王骏 +3 位作者 郁超 张珂 赵云龙 王楚扬 《电网与清洁能源》 CSCD 北大核心 2024年第10期93-104,共12页
低载波比(载波频率与基波频率之比)的载波移相调制策略可有效降低MMC-UPFC的开关损耗,但会导致“减频效应”造成电容电压谐波频率明显降低,严重削弱电容电压均衡策略的控制效果。根据电容电压谐波频率随载波比降低的规律,定量分析了低... 低载波比(载波频率与基波频率之比)的载波移相调制策略可有效降低MMC-UPFC的开关损耗,但会导致“减频效应”造成电容电压谐波频率明显降低,严重削弱电容电压均衡策略的控制效果。根据电容电压谐波频率随载波比降低的规律,定量分析了低载波比调制下MMC-UPFC电容电压的减频效应,明确了低载波比与电容电压低频波动、子模块电容不稳定充放电状态和子模块间电容电压不均衡间的内在联系及其发生机理;在此基础上,提出一种基于RBF神经网络的减频效应抑制策略,通过检测电容电压的谐波分量进行最优载波比选择和电容电压控制。最后以苏州南部500kV UPFC示范工程为参考进行仿真,证明了MMC-UPFC电容电压的减频效应的存在性以及抑制方法的有效性。 展开更多
关键词 模块化多电平换流器 统一潮流控制器 减频效应 载波移相调制 RBF神经网络
下载PDF
基于MNN的主动力装置故障诊断研究
19
作者 杨广 梁晶晶 《盐城工学院学报(自然科学版)》 CAS 2014年第3期1-5,共5页
单神经网络诊断大多已成功应用到实际的故障诊断系统中。而在实际应用中,多层次多故障的复杂系统普遍存在,运用单一结构神经网络在处理复杂故障诊断问题时网络过于庞大,诊断精度降低。对层次分类诊断模型进行研究分析,提出运用多重结构... 单神经网络诊断大多已成功应用到实际的故障诊断系统中。而在实际应用中,多层次多故障的复杂系统普遍存在,运用单一结构神经网络在处理复杂故障诊断问题时网络过于庞大,诊断精度降低。对层次分类诊断模型进行研究分析,提出运用多重结构神经网络(MNN)来对主动力装置进行故障诊断研究,诊断结果表明该模型是可行和有效的。 展开更多
关键词 主动力装置 故障诊断 神经网络 mnn
下载PDF
基于机器视觉的导盲杖设计
20
作者 高勇 陈凯文 +1 位作者 张城 黄淼 《河南科技》 2024年第12期24-29,共6页
【目的】为了满足视障人士多方面的实际出行需求,设计了一款基于机器视觉的导盲杖。【方法】该系统整体为模块化设计,采用了STM32F407VET6单片机和边缘智能计算K210芯片为核心。其机器视觉功能是利用神经网络和YOLOv2算法训练建立起模型... 【目的】为了满足视障人士多方面的实际出行需求,设计了一款基于机器视觉的导盲杖。【方法】该系统整体为模块化设计,采用了STM32F407VET6单片机和边缘智能计算K210芯片为核心。其机器视觉功能是利用神经网络和YOLOv2算法训练建立起模型,并对摄像头拍摄到的实时图像进行检测而实现的。系统自身具备陀螺仪姿态角度测量功能,通过判断系统旋转角度是否达到设定阈值,以此来判断使用者是否有摔倒迹象;系统还具有GPS定位功能,在突发情况下系统会通过串口发送AT指令控制GSM模块向紧急联络人发送位置信息。【结果】该系统各个功能经模拟测试,其机器视觉功能检测的正确率达到99%以上;姿态角度测量误差维持在1°以内;GPS和GSM功能可以定位并发送短信息。【结论】该系统的功能可满足视障人士基本的实际出行需要。此外,图像检测模型的建立,可为今后训练模型以检测更多物体,完善机器视觉功能,应对更多实际出行的情况。 展开更多
关键词 图像识别 卷积神经网络 智能导盲杖 模块化设计
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部