BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require furt...BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require further clinical evaluation and investigation.AIM To explore the application value of the"five steps four quadrants"modularized en bloc dissection technique for accessing hepatic hilum lymph nodes in LPD patients.METHODS A total of 52 patients who underwent LPD via the"five steps four quadrants"modularized en bloc dissection technique for hepatic hilum lymph nodes from April 2021 to July 2023 in our department were analyzed retrospectively.The patients'body mass index(BMI),preoperative laboratory indices,intraoperative variables and postoperative complications were recorded.The relationships between preoperative data and intraoperative lymph node dissection time and blood loss were also analyzed.RESULTS Among the 52 patients,36 were males and 16 were females,and the average age was 62.2±11.0 years.There were 26 patients with pancreatic head cancer,16 patients with periampullary cancer,and 10 patients with distal bile duct cancer.The BMI was 22.3±3.3 kg/m²,and the median total bilirubin(TBIL)concentration was 57.7(16.0-155.7)µmol/L.All patients successfully underwent the"five steps four quadrants"modularized en bloc dissection technique without lymph node clearance-related complications such as postoperative bleeding or lymphatic leakage.Correlation analysis revealed significant associations between preoperative BMI(r=0.3581,P=0.0091),TBIL level(r=0.2988,P=0.0341),prothrombin time(r=0.3018,P=0.0297)and lymph node dissection time.Moreover,dissection time was significantly correlated with intraoperative blood loss(r=0.7744,P<0.0001).Further stratified analysis demonstrated that patients with a preoperative BMI≥21.9 kg/m²and a TIBL concentration≥57.7μmol/L had significantly longer lymph node dissection times(both P<0.05).CONCLUSION The"five steps four quadrants"modularized en bloc dissection technique for accessing the hepatic hilum lymph node is safe and feasible for LPD.This technique is expected to improve the efficiency of hepatic hilum lymph node dissection and shorten the learning curve;thus,it is worthy of further clinical promotion and application.展开更多
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
This article, by using mathematical expressions, offers a scientific framework for understanding how the grading system of Qing′s structural carpentry determines the design and construction in the grand style timber...This article, by using mathematical expressions, offers a scientific framework for understanding how the grading system of Qing′s structural carpentry determines the design and construction in the grand style timber architecture.The Qing′s grand style timber structure, which is ready for prefabrication and assembly, is extremely hierarchical oriented and significantly standardized. The general procedure in designing a grand style timber structure is to start with the grade that defines the basic module (dou kou); next comes with the number of bracket set (cuan), the number of longitudinal bays and the number of purlins which affect its plan and cross section; thirdly choose a roof type that determines its longitudinal section and the facade as well. A series of formulae are conducted to help depict the layout, cross sectional roof curvature and special longitudinal treatments in 4 sloped and 9 spined roofs respectively.展开更多
Modularized circuit designs for chaotic systems are introduced in this paper.Especially,a typical improved modularized design strategy is proposed and applied to a new hyper-chaotic system circuit implementation.In th...Modularized circuit designs for chaotic systems are introduced in this paper.Especially,a typical improved modularized design strategy is proposed and applied to a new hyper-chaotic system circuit implementation.In this paper,the detailed design procedures are described.Multisim simulations and physical experiments are conducted,and the simulation results are compared with Matlab simulation results for different system parameter pairs.These results are consistent with each other and they verify the existence of the hyper-chaotic attractor for this new hyper-chaotic system.展开更多
Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This...Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This paper presents a new type of assembled connection joint for the high-rise modularized construction. Cyclic shear tests of full-scale joints were carried out, and the key indexes of their seismic performances including the hysteretic performance, ductility, and energy dissipation capacity were analyzed and obtained. The results show that the hysteresis loops of longitudinal and lateral cyclic shear tests were both plump in shapes. The ductility coefficients were 4.54 and 4.98, and the energy dissipation coefficients were 1.83 and 1.43, respectively. The test joint had good ductility and energy dissipation capacity. The positions of yield failure of specimens were mainly concentrated in the connection areas between the column and short beam or end-plate. The research can provide the technical reference for the seismic design and engineering application of related modularized constructions.展开更多
A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide...A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide-size-range magnetite powder (0.3-0.06 ram) and 〈1 mm fine coal were numerically studied. The simulation results show that the fluidization performance of the wide-size-range medium-solid bed is good. The separation performance of the modularized system was then investigated in detail using a mixture of 〈0.3 mm magnetite powder (mass fraction of 0.3-0.06 mm particles is 91.38 %) and 〈1 mm fine coal as solid media. The experimental results show that at separation densities of 1.33 g/cm^3 or 1.61 g/cm^3, 50-6 mm coal can be separated effectively with probable error, E, values of 0.05 g/cm^3 and 0.06 g/cm^3, respectively. This technique is beneficial for saving water resources and for the clean utilization of coal.展开更多
Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via empl...Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via employing 100% space utilization host material of cobalt loaded carbon nanoparticles derived from ZIF-67. The modular dispersed storage of sulfur not only greatly increases the proportion of active sulfur,but also inhibits the occurrence of volume expansion. Meanwhile, 100% space utilization host material can greatly improve the conductivity of the cathode, provide a larger electrolyte wetting interface and effectively suppress the shuttle effect. Moreover, loaded cobalt particles have high catalytic activity for electrochemical reaction and can effectively improve the redox kinetics. The cell with new cathode host material carbonized at 650 ℃(ZIF-67(650 ℃)) exhibits superior rate performance and can maintain a high specific capacity of 950 m Ah/g after 100 cycles at 0.2 C, showing a good cycle stability.展开更多
Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a ...Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a modular risk evaluation model based on a fuzzy fault tree.First,through the analysis of the main process oftree down and combining the Offshore&Onshore Reliability Data(OREDA)failure statistics and the operation procedure and the data provided by the job,the fault tree model of risk analysis of the tree down installation was established.Then,by introducing the natural language of expert comprehensive evaluation and combining fuzzy principles,quantitative analysis was carried out,and the fuzzy number was used to calculate the failure probability of a basic event and the occurrence probability of a top event.Finally,through a sensitivity analysis of basic events,the basic events of top events significantly affected were determined,and risk control and prevention measures for the corresponding high-risk factors were proposed for subsea horizontal X-tree down installation.展开更多
A modularized and air adjustable constructed submerged plant bed(CSPB)which can be used to restore the eutrophic water is introduced in this paper.This plant bed helps hydrophyte grow under poor conditions such as fre...A modularized and air adjustable constructed submerged plant bed(CSPB)which can be used to restore the eutrophic water is introduced in this paper.This plant bed helps hydrophyte grow under poor conditions such as frequently changed water depth,impaired water transparency,algae bloom and substantial duckweed in summer,which are not naturally suitable for growing hydrophyte.This pilot study in Waihuan River of Tianjin,China,revealed that reduction of Chemical Oxygen Demand(COD),Total Nitrogen(TN)and Total Phosphorus(TP)by the use of CSPB could be reached 30%-35%,35%-40%,30%-40%respectively in the growing season(from March to October)and 5%-10%,5%-15%,7%-20%respectively in the winter(from November to February)when the detention time was 6 d.The relationships between the concentration of COD,TN,TP and the detention time fit the first-order kinetic equation well and the coefficients of determination(R^(2))were all above 0.9.The attenuation coefficients k of the kinetic equation were a function of the water temperature.When the water temperature was quite low or quite high,k was not significantly changed with increasing or decreasing water temperature.While when the temperature was in a moderate range,an increase or decrease of water temperature would lead to a rapid increase or decrease in k.展开更多
The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular sy...The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies.展开更多
Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced ...Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects.展开更多
Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes ametho...Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.展开更多
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
How can individual mobility in urban areas be maintained alongside scooters and cargo bikes if conventional vehicles are foreseeably no longer allowed to enter city centers?And how can urban living be combined with in...How can individual mobility in urban areas be maintained alongside scooters and cargo bikes if conventional vehicles are foreseeably no longer allowed to enter city centers?And how can urban living be combined with individual mobility in a sustainable and socially acceptable way?LiMo-2040 attempts to provide answers to these questions.It follows a holistic approach according to the criteria:As light,as compact and as simple(cost-effective)as possible.Modular e-vehicle concepts(consisting of vehicle cabin and chassis)are known,but have not yet been thought through to their logical conclusion.The LiMo cabin is not only a vehicle cabin,but also a component of a modern high-rise apartment.It therefore requires no parking space and combines urban living and individual mobility sustainably and cost-effectively.If a vehicle is needed,an app can be used to book a chassis that comes along autonomously and waits until the cabin,including its occupants,travels down a sophisticated rail system,docks and autonomously heads for the desired destination.展开更多
To solve the problem that utilizing an air rower lowers indoor air quality due to the dust stirred up in the course of rowing, an air rower is designed to have the extra function of air purifying. The designed rower i...To solve the problem that utilizing an air rower lowers indoor air quality due to the dust stirred up in the course of rowing, an air rower is designed to have the extra function of air purifying. The designed rower is composed of six parts, which are the frame, air generator, transmission part, air purifying filter cartridge, performance monitor, and electric motor. To fulfill the task, the filter cartridge is vertically arranged to lead the air to enter from the lower part and vent out of the upper part to filter and purify the air before it enters the generator so as that the indoor air is well circulated to improve the air purification effect when the rower is utilizing. The modular detachable design allows the air filter and electric motor to be installed and disassembled to adapt to different air purification needs. The designed rower has the benefit of lower purchasing cost and energy saving that may motivate exercising, bringing more fun and the sense of accomplishment.展开更多
Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which c...Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which could reassemble into various configurations through the compound joint motion.Moreover,an illumination adaptive modular robot identification(IAMRI)algorithm is proposed for CRMR.At first,an adaptive threshold is applied to detect oriented FAST features in the robot image.Then,the effective detection of features in non-uniform illumination areas is achieved through an optimized quadtree decomposition method.After matching features,an improved random sample consensus algorithm is employed to eliminate the mismatched features.Finally,the reconfigurable robot module is identified effectively through the perspective transformation.Compared with ORB,MA,Y-ORB,and S-ORB algorithms,the IAMRI algorithm has an improvement of over 11.6%in feature uniformity,and 13.7%in the comprehensive indicator,respectively.The IAMRI algorithm limits the relative error within 2.5 pixels,efficiently completing the CRMR identification under complex environmental changes.展开更多
Vocational education plays a vital role in the development of skilled technical professionals and the advancement of the economy.However,the emphasis on campus education often neglects the importance of external train...Vocational education plays a vital role in the development of skilled technical professionals and the advancement of the economy.However,the emphasis on campus education often neglects the importance of external training,hindering the overall development of vocational education.This study aims to address this issue by exploring the design and development of small modular courses that integrate training and education in vocational colleges,focusing on the mechanics course as a case study.The research methods employed in this study include an in-depth analysis of enterprise training needs,the development of digital teaching resources utilizing the finite element method(FEM),and the implementation of a small modular course integrating education and training.The data analysis reveals positive outcomes in terms of learners’comprehension and engagement with complex mechanics formulas through the use of stress nephograms and other digital resources.This research provides a new perspective on curriculum design and offers insights into the integration of training and education in vocational colleges.The findings underscore the significance of incorporating innovative teaching methodologies and digital resources in enhancing the quality and relevance of vocational education,ultimately contributing to the cultivation of skilled professionals and the growth of the vocational education sector.展开更多
With the widespread application of integrated modular aviation(IMA)electronic systems,the requirements of IMA characteristic analysis and configuration generation have also improved significantly."Configuration a...With the widespread application of integrated modular aviation(IMA)electronic systems,the requirements of IMA characteristic analysis and configuration generation have also improved significantly."Configuration and design system based on AADL models(real-time,reliability,interactive complexity,and schedulability)analysis of the AADL model"mainly get through key characteristic analysis for optimization,combined with input of component parameter information and constraint information,assist designers in generating system configuration information,and form a comprehensive modular avionics system resource configuration strategy generation platform.Also,the tool can generate configuration plans for avionics system software and hardware physical architecture configuration.The analysis of the avionics system model mainly involves designers inputting the existing system model architecture for multi characteristic analysis,it can realize the multi-character analysis based on software intensive system architecture models for software dense systems.Inter-complexity and schedulability analysis,and according to characteristic constraint analysis、system model assessment parameters and system architecture constraint parameters to generate configuration scheme information that meets the requirements.The system can meet domestic and foreign software-intensive systems and meet its quality requirements.展开更多
As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its applic...As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.展开更多
As organizations increasingly embrace digital transformation, the integration of modern web technologies like React.js with Business Process Management (BPM) applications has become essential. React components offer f...As organizations increasingly embrace digital transformation, the integration of modern web technologies like React.js with Business Process Management (BPM) applications has become essential. React components offer flexibility, reusability, and scalability, making them ideal for enhancing user interfaces and driving user engagement within BPM environments. This article explores the benefits, challenges, and best practices of leveraging React components in BPM applications, along with real-world examples of successful implementations.展开更多
基金Supported by Health Research Program of Anhui,No.AHWJ2022b032。
文摘BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require further clinical evaluation and investigation.AIM To explore the application value of the"five steps four quadrants"modularized en bloc dissection technique for accessing hepatic hilum lymph nodes in LPD patients.METHODS A total of 52 patients who underwent LPD via the"five steps four quadrants"modularized en bloc dissection technique for hepatic hilum lymph nodes from April 2021 to July 2023 in our department were analyzed retrospectively.The patients'body mass index(BMI),preoperative laboratory indices,intraoperative variables and postoperative complications were recorded.The relationships between preoperative data and intraoperative lymph node dissection time and blood loss were also analyzed.RESULTS Among the 52 patients,36 were males and 16 were females,and the average age was 62.2±11.0 years.There were 26 patients with pancreatic head cancer,16 patients with periampullary cancer,and 10 patients with distal bile duct cancer.The BMI was 22.3±3.3 kg/m²,and the median total bilirubin(TBIL)concentration was 57.7(16.0-155.7)µmol/L.All patients successfully underwent the"five steps four quadrants"modularized en bloc dissection technique without lymph node clearance-related complications such as postoperative bleeding or lymphatic leakage.Correlation analysis revealed significant associations between preoperative BMI(r=0.3581,P=0.0091),TBIL level(r=0.2988,P=0.0341),prothrombin time(r=0.3018,P=0.0297)and lymph node dissection time.Moreover,dissection time was significantly correlated with intraoperative blood loss(r=0.7744,P<0.0001).Further stratified analysis demonstrated that patients with a preoperative BMI≥21.9 kg/m²and a TIBL concentration≥57.7μmol/L had significantly longer lymph node dissection times(both P<0.05).CONCLUSION The"five steps four quadrants"modularized en bloc dissection technique for accessing the hepatic hilum lymph node is safe and feasible for LPD.This technique is expected to improve the efficiency of hepatic hilum lymph node dissection and shorten the learning curve;thus,it is worthy of further clinical promotion and application.
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
文摘This article, by using mathematical expressions, offers a scientific framework for understanding how the grading system of Qing′s structural carpentry determines the design and construction in the grand style timber architecture.The Qing′s grand style timber structure, which is ready for prefabrication and assembly, is extremely hierarchical oriented and significantly standardized. The general procedure in designing a grand style timber structure is to start with the grade that defines the basic module (dou kou); next comes with the number of bracket set (cuan), the number of longitudinal bays and the number of purlins which affect its plan and cross section; thirdly choose a roof type that determines its longitudinal section and the facade as well. A series of formulae are conducted to help depict the layout, cross sectional roof curvature and special longitudinal treatments in 4 sloped and 9 spined roofs respectively.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61403395)the Natural Science Foundation of Tianjin,China(Grant No.13JCYBJC39000)+3 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of Chinathe Fund from the Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation of China(Grant No.104003020106)the National Basic Research Program of China(Grant No.2014CB744904)the Fund for the Scholars of Civil Aviation University of China(Grant No.2012QD21x)
文摘Modularized circuit designs for chaotic systems are introduced in this paper.Especially,a typical improved modularized design strategy is proposed and applied to a new hyper-chaotic system circuit implementation.In this paper,the detailed design procedures are described.Multisim simulations and physical experiments are conducted,and the simulation results are compared with Matlab simulation results for different system parameter pairs.These results are consistent with each other and they verify the existence of the hyper-chaotic attractor for this new hyper-chaotic system.
基金Sponsored by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2019MEE047)the National Key Research and Development Project of China (Grant No. 2020YFB1901403)CSCEC Technical and Development Plan (Grant No. CSCEC-2020-Z-35)。
文摘Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This paper presents a new type of assembled connection joint for the high-rise modularized construction. Cyclic shear tests of full-scale joints were carried out, and the key indexes of their seismic performances including the hysteretic performance, ductility, and energy dissipation capacity were analyzed and obtained. The results show that the hysteresis loops of longitudinal and lateral cyclic shear tests were both plump in shapes. The ductility coefficients were 4.54 and 4.98, and the energy dissipation coefficients were 1.83 and 1.43, respectively. The test joint had good ductility and energy dissipation capacity. The positions of yield failure of specimens were mainly concentrated in the connection areas between the column and short beam or end-plate. The research can provide the technical reference for the seismic design and engineering application of related modularized constructions.
基金Projects(50921002, 50774084) supported by the National Natural Science Foundation of ChinaProject(2007AA05Z318) supported by the National High-tech Research and Development Program of China+1 种基金Project(BK2010002) supported by the Natural Science Foundation of Jiangsu Province of ChinaProject(20100480473) supported by the China Postdoctoral Science Foundation
文摘A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide-size-range magnetite powder (0.3-0.06 ram) and 〈1 mm fine coal were numerically studied. The simulation results show that the fluidization performance of the wide-size-range medium-solid bed is good. The separation performance of the modularized system was then investigated in detail using a mixture of 〈0.3 mm magnetite powder (mass fraction of 0.3-0.06 mm particles is 91.38 %) and 〈1 mm fine coal as solid media. The experimental results show that at separation densities of 1.33 g/cm^3 or 1.61 g/cm^3, 50-6 mm coal can be separated effectively with probable error, E, values of 0.05 g/cm^3 and 0.06 g/cm^3, respectively. This technique is beneficial for saving water resources and for the clean utilization of coal.
基金supported by the National Natural Science Foundation of China (No.52173255)the Opening Project of the Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (No.JSKC20021)the Collaborative Innovation Center for Advanced Micro/nanomaterials and Equipment (Co-constructed by Jiangsu Province and Ministry of Education)。
文摘Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via employing 100% space utilization host material of cobalt loaded carbon nanoparticles derived from ZIF-67. The modular dispersed storage of sulfur not only greatly increases the proportion of active sulfur,but also inhibits the occurrence of volume expansion. Meanwhile, 100% space utilization host material can greatly improve the conductivity of the cathode, provide a larger electrolyte wetting interface and effectively suppress the shuttle effect. Moreover, loaded cobalt particles have high catalytic activity for electrochemical reaction and can effectively improve the redox kinetics. The cell with new cathode host material carbonized at 650 ℃(ZIF-67(650 ℃)) exhibits superior rate performance and can maintain a high specific capacity of 950 m Ah/g after 100 cycles at 0.2 C, showing a good cycle stability.
基金financially supported by the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Production System,Topic 4:Research on Subsea X-Tree and Wellhead Offshore Testing Technology(Grant No.MC-201901-S01-04)the Key Research and Development Program of Shandong Province(Major Innovation Project)(Grant Nos.2022CXGC020405,2023CXGC010415)。
文摘Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a modular risk evaluation model based on a fuzzy fault tree.First,through the analysis of the main process oftree down and combining the Offshore&Onshore Reliability Data(OREDA)failure statistics and the operation procedure and the data provided by the job,the fault tree model of risk analysis of the tree down installation was established.Then,by introducing the natural language of expert comprehensive evaluation and combining fuzzy principles,quantitative analysis was carried out,and the fuzzy number was used to calculate the failure probability of a basic event and the occurrence probability of a top event.Finally,through a sensitivity analysis of basic events,the basic events of top events significantly affected were determined,and risk control and prevention measures for the corresponding high-risk factors were proposed for subsea horizontal X-tree down installation.
基金This work was supported by NSF of Tianjin(Nos.043115111-3,09ZCGYSF00400,200801100)National Key-Projects of Water Pollution Control and Prevention(Nos.2009ZX07209-001 and 2008ZX07314-005-011)the National Natural Science Foundation of China(Grant No.5107906).
文摘A modularized and air adjustable constructed submerged plant bed(CSPB)which can be used to restore the eutrophic water is introduced in this paper.This plant bed helps hydrophyte grow under poor conditions such as frequently changed water depth,impaired water transparency,algae bloom and substantial duckweed in summer,which are not naturally suitable for growing hydrophyte.This pilot study in Waihuan River of Tianjin,China,revealed that reduction of Chemical Oxygen Demand(COD),Total Nitrogen(TN)and Total Phosphorus(TP)by the use of CSPB could be reached 30%-35%,35%-40%,30%-40%respectively in the growing season(from March to October)and 5%-10%,5%-15%,7%-20%respectively in the winter(from November to February)when the detention time was 6 d.The relationships between the concentration of COD,TN,TP and the detention time fit the first-order kinetic equation well and the coefficients of determination(R^(2))were all above 0.9.The attenuation coefficients k of the kinetic equation were a function of the water temperature.When the water temperature was quite low or quite high,k was not significantly changed with increasing or decreasing water temperature.While when the temperature was in a moderate range,an increase or decrease of water temperature would lead to a rapid increase or decrease in k.
基金supported by the National Nature Science Foundation of China (62063011,62273169, 61922037, 61873115)Yunnan Fundamental Research Projects(202001AV070001)+1 种基金Yunnan Major Scientific and Technological Projects(202202AG050002)partially supported by the Open Foundation of Key Laboratory in Software Engineering of Yunnan Province (2020SE502)。
文摘The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies.
文摘Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects.
基金sponsored by the National Natural Science Foundation ofChina(No.52235007,YH)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004,YH)+3 种基金the NationalNatural Science Foundation of China(No.52305300,MJX)the Fellowship of China Postdoctoral Science Foundation(No.2022M722826,MJX)the National Natural Science Foundation of China(No.82203602,JW)the Zhejiang Provincial Natural Science Foundation of China(No.LQ22H160020,JW)。
文摘Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
文摘How can individual mobility in urban areas be maintained alongside scooters and cargo bikes if conventional vehicles are foreseeably no longer allowed to enter city centers?And how can urban living be combined with individual mobility in a sustainable and socially acceptable way?LiMo-2040 attempts to provide answers to these questions.It follows a holistic approach according to the criteria:As light,as compact and as simple(cost-effective)as possible.Modular e-vehicle concepts(consisting of vehicle cabin and chassis)are known,but have not yet been thought through to their logical conclusion.The LiMo cabin is not only a vehicle cabin,but also a component of a modern high-rise apartment.It therefore requires no parking space and combines urban living and individual mobility sustainably and cost-effectively.If a vehicle is needed,an app can be used to book a chassis that comes along autonomously and waits until the cabin,including its occupants,travels down a sophisticated rail system,docks and autonomously heads for the desired destination.
文摘To solve the problem that utilizing an air rower lowers indoor air quality due to the dust stirred up in the course of rowing, an air rower is designed to have the extra function of air purifying. The designed rower is composed of six parts, which are the frame, air generator, transmission part, air purifying filter cartridge, performance monitor, and electric motor. To fulfill the task, the filter cartridge is vertically arranged to lead the air to enter from the lower part and vent out of the upper part to filter and purify the air before it enters the generator so as that the indoor air is well circulated to improve the air purification effect when the rower is utilizing. The modular detachable design allows the air filter and electric motor to be installed and disassembled to adapt to different air purification needs. The designed rower has the benefit of lower purchasing cost and energy saving that may motivate exercising, bringing more fun and the sense of accomplishment.
基金supported by the National Key R&D Program of China(Grant No.2018YFB1304600)the National Natural Science Foundation of China(Grant No.62003337)+1 种基金the Open Fund for State Key Laboratory of Robotics(Grant No.2023O03)the Liaoning Province Joint Open Fund for Key Scientific and Technological Innovation Bases(Grant No.2021-KF-12-05).
文摘Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which could reassemble into various configurations through the compound joint motion.Moreover,an illumination adaptive modular robot identification(IAMRI)algorithm is proposed for CRMR.At first,an adaptive threshold is applied to detect oriented FAST features in the robot image.Then,the effective detection of features in non-uniform illumination areas is achieved through an optimized quadtree decomposition method.After matching features,an improved random sample consensus algorithm is employed to eliminate the mismatched features.Finally,the reconfigurable robot module is identified effectively through the perspective transformation.Compared with ORB,MA,Y-ORB,and S-ORB algorithms,the IAMRI algorithm has an improvement of over 11.6%in feature uniformity,and 13.7%in the comprehensive indicator,respectively.The IAMRI algorithm limits the relative error within 2.5 pixels,efficiently completing the CRMR identification under complex environmental changes.
基金General Project of the 13th Five Year Plan for Education Science in Beijing in 2020“Key Elements of Vocational Education and Training System Construction in Higher Vocational Colleges”(Grant No.CCDB2020135)。
文摘Vocational education plays a vital role in the development of skilled technical professionals and the advancement of the economy.However,the emphasis on campus education often neglects the importance of external training,hindering the overall development of vocational education.This study aims to address this issue by exploring the design and development of small modular courses that integrate training and education in vocational colleges,focusing on the mechanics course as a case study.The research methods employed in this study include an in-depth analysis of enterprise training needs,the development of digital teaching resources utilizing the finite element method(FEM),and the implementation of a small modular course integrating education and training.The data analysis reveals positive outcomes in terms of learners’comprehension and engagement with complex mechanics formulas through the use of stress nephograms and other digital resources.This research provides a new perspective on curriculum design and offers insights into the integration of training and education in vocational colleges.The findings underscore the significance of incorporating innovative teaching methodologies and digital resources in enhancing the quality and relevance of vocational education,ultimately contributing to the cultivation of skilled professionals and the growth of the vocational education sector.
文摘With the widespread application of integrated modular aviation(IMA)electronic systems,the requirements of IMA characteristic analysis and configuration generation have also improved significantly."Configuration and design system based on AADL models(real-time,reliability,interactive complexity,and schedulability)analysis of the AADL model"mainly get through key characteristic analysis for optimization,combined with input of component parameter information and constraint information,assist designers in generating system configuration information,and form a comprehensive modular avionics system resource configuration strategy generation platform.Also,the tool can generate configuration plans for avionics system software and hardware physical architecture configuration.The analysis of the avionics system model mainly involves designers inputting the existing system model architecture for multi characteristic analysis,it can realize the multi-character analysis based on software intensive system architecture models for software dense systems.Inter-complexity and schedulability analysis,and according to characteristic constraint analysis、system model assessment parameters and system architecture constraint parameters to generate configuration scheme information that meets the requirements.The system can meet domestic and foreign software-intensive systems and meet its quality requirements.
文摘As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.
文摘As organizations increasingly embrace digital transformation, the integration of modern web technologies like React.js with Business Process Management (BPM) applications has become essential. React components offer flexibility, reusability, and scalability, making them ideal for enhancing user interfaces and driving user engagement within BPM environments. This article explores the benefits, challenges, and best practices of leveraging React components in BPM applications, along with real-world examples of successful implementations.