AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anteri...AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.展开更多
The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the fo...The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 ×10^19 cm 3 electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.展开更多
The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic gr...The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.展开更多
When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic...When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.展开更多
AIM:To analyze the retinal modulation transfer function between amblyopes whose visual acuity was corrected to 5.0 and normal subjects at the same age. METHODS: RM-800 used to detect contrast sensitivity was adopted t...AIM:To analyze the retinal modulation transfer function between amblyopes whose visual acuity was corrected to 5.0 and normal subjects at the same age. METHODS: RM-800 used to detect contrast sensitivity was adopted to measure MTF of 96 amblyopes (96 eyes) whose visual acuity was corrected to 5.0 and 80 normal controls (80 eyes) at the same age under six interference fringes (IVA=0.06, 0.1, 0.2, 0.4, 0.6, 0.8). RESULTS: The functional values of amblyopes were significantly lower than those of normal subjects in every fringe (P<0.01), especially in medium and high frequency. CONCLUSION: For amblyopes, MTF was still abnormal after stopping the treatments.展开更多
The key difficulty of restoring a fuzzy image is to estimate its point spread function( PSF). In the paper,PSF is modelled based on modulation transfer function( MTF). The first step is calculating the image MTF. In t...The key difficulty of restoring a fuzzy image is to estimate its point spread function( PSF). In the paper,PSF is modelled based on modulation transfer function( MTF). The first step is calculating the image MTF. In the traditional slanted-edge method,a sub-block is always manually extracted from original image and its MTF will be viewed as the result of the whole image. However,handcraft extraction is inefficient and will lead to inaccurate results. Given this,an automatic MTF computation algorithm is proposed,which extracts and screens out all the effective sub-blocks and calculates their average MTF as the final result. Then,a two-dimensional MTF restoration model is constructed by multiplying the horizontal and vertical MTF,and it is combined with conventional image restoration methods to restore fuzzy image. Experimental results indicate the proposed method implementes a fast and accurate MTF computation and the MTF model improves the performance of conventional restoration methods significantly.展开更多
Background The evaluation of retinal image quality in cataract eyes has gained importance and the clinical modulation transfer functions (MTF) can obtained by aberrometer and double pass (DP) system. This study ai...Background The evaluation of retinal image quality in cataract eyes has gained importance and the clinical modulation transfer functions (MTF) can obtained by aberrometer and double pass (DP) system. This study aimed to compare MTF derived from a ray tracing aberrometer and a DP system in early cataractous and normal eyes. Methods There were 128 subjects with 61 control eyes and 67 eyes with early cataract defined according to the Lens Opacities Classification System II1. A laser ray-tracing wavefront aberrometer (iTrace) and a double pass (DP) system (OQAS) assessed ocular MTF for 6.0 mm pupil diameters following dilation. Areas under the MTF (AUMTF) and their correlations were analyzed. Stepwise multiple regression analysis assessed factors affecting the differences between iTrace- and OQAS-derived AUMTF for the early cataract group. Results For both early cataract and control groups, iTrace-derived MTFs were higher than OQAS-derived MTFs across a range of spatial frequencies (P 〈0.01). No significant difference between the two groups occurred for iTrace-derived AUMTF, but the early cataract group had significantly smaller OQAS-derived AUMTF than did the control group (P 〈0.01). AUMTF determined from both the techniques demonstrated significant correlations with nuclear opacities, higher-order aberrations (HOAs), visual acuity, and contrast sensitivity functions, while the OQAS-derived AUMTF also demonstrated significant correlations with age and cortical opacity grade. The factors significantly affecting the difference between iTrace and OQAS AUMTF were root-mean-squared HOAs (standardized beta coefficient=-0.63, P 〈0.01) and age (standardized beta coefficient=0.26, P 〈0.01). Conclusions MTFs determined from a iTrace and a DP system (OQAS) differ significantly in early cataractous and normal subjects. Correlations with visual performance were higher for the DP system. OQAS-derived MTF may be useful as an indicator of visual performance in early cataract eyes.展开更多
The temporal characteristics of GaAs NEA and alkali metal photocathodes are studied using Monte Carlo simulation method. The electron transit time and its distribution functions in the photocathodes are calculated. Ba...The temporal characteristics of GaAs NEA and alkali metal photocathodes are studied using Monte Carlo simulation method. The electron transit time and its distribution functions in the photocathodes are calculated. Based on the results, the time modulation transfer functions and temporal resolutions of the photocathodes are obtained. The results show that the response time and temporal resolution of alkali metal photocathode is in femitosecond order and those of GaAs NEA photocathode are in picosecond order.展开更多
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is ap...An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.展开更多
Multispectral microscopy enables information enhancement in the study of specimens because of the large spectral band used in this technique. A low cost multimode multispectral microscope using a camera and a set of q...Multispectral microscopy enables information enhancement in the study of specimens because of the large spectral band used in this technique. A low cost multimode multispectral microscope using a camera and a set of quasi-monochromatic Light Emitting Diodes (LEDs) ranging from ultraviolet to near-infrared wavelengths as illumination sources was constructed. But the use of a large spectral band provided by non-monochromatic sources induces variation of focal plan of the imager due to chromatic aberration which rises up the diffraction effects and blurs the images causing shadow around them. It results in discrepancies between standard spectra and extracted spectra with microscope. So we need to calibrate that instrument to be a standard one. We proceed with two types of images comparison to choose the reference wavelength for image acquisition where diffraction effect is more reduced. At each wavelength chosen as a reference, one image is well contrasted. First, we compare the thirteen well contrasted images to identify that presenting more reduced shadow. In second time, we determine the mean of the shadow size over the images from each set. The correction of the discrepancies required measurements on filters using a standard spectrometer and the microscope in transmission mode and reflection mode. To evaluate the capacity of our device to transmit information in frequency domain, its modulation transfer function is evaluated. Multivariate analysis is used to test its capacity to recognize properties of well-known sample. The wavelength 700 nm was chosen to be the reference for the image acquisition, because at this wavelength the images are well contrasted. The measurement made on the filters suggested correction coefficients in transmission mode and reflection mode. The experimental instrument recognized the microsphere’s properties and led to the extraction of the standard transmittance and reflectance spectra. Therefore, this microscope is used as a conventional instrument.展开更多
A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modula-tion model is proposed. In this model, the wind surface stress modulation is related to the modulation...A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modula-tion model is proposed. In this model, the wind surface stress modulation is related to the modulation of ripple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the ripple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.展开更多
The effect of ocean wave breaking as a non-Bragg mechanism on backscattering cross-section and modulation transfer functions (MTF) of radar was investigated based on Bragg resonance theory and parametric method. The...The effect of ocean wave breaking as a non-Bragg mechanism on backscattering cross-section and modulation transfer functions (MTF) of radar was investigated based on Bragg resonance theory and parametric method. The result showed that the additional effect of wave breaking on backscattering cross-section is not more than 20% except for the small incident angle of VV polarized electromagnetic (e.m.) wave but is significant for HH polarized e.m. wave. Breaking waves lead to increase in the modulus of tilt modulation MTF and the larger the wind speed, the faster the increase. For large incident angle, the modulus of tilt modulation MTF with wave breaking decreases quickly with incident angle for HH polarization and approach to that without wave breaking for VV polarization. The hydrodynamic MTF increases 30%-60% when considering wave breaking and the increase is larger for HH polarization than for VV polarization.展开更多
Existing methods of measurement MTF for discrete imaging system are analysed. A slit target is frequently used to measure the MTF for an imaging system. Usually there are four methods to measure the MTF for a discrete...Existing methods of measurement MTF for discrete imaging system are analysed. A slit target is frequently used to measure the MTF for an imaging system. Usually there are four methods to measure the MTF for a discrete imaging system by using a slit. These methods have something imperfect respectively. But for the discrete imaging systems of under sampling it is difficult to reproduce this type of target properly since frequencies above Nyquist are folded into those below Nyquist, resulting in aliasing effect. To tackle the aliasing problem, a super resolution technique is introduced into our measurement, which gives MTF values both above and below Nyquist more accurately.展开更多
Purpose: Children are sometimes examined with Computed Tomography protocols designed for adults, leading to radiation doses higher than necessary. Lack of optimisation could lead to image quality higher than what is n...Purpose: Children are sometimes examined with Computed Tomography protocols designed for adults, leading to radiation doses higher than necessary. Lack of optimisation could lead to image quality higher than what is needed for diagnostic purposes with associated high doses to patients. Optimising the protocols for paediatric head trauma CT imaging will reduce radiation dose. Objective: The study aimed to optimise radiation dose and assess the image quality for a set of protocols by evaluating noise, a contrast to noise ratio, modulation transfer function and noise power spectrum. Methods: Somaton Sensation 64 was used to scan the head of an anthropomorphic phantom with a set of protocols. ImageJ software was used to analyse the paediatric head image from the scanner. IMPACTSCAN dosimeter software was used to evaluate the radiation dose to the various organs in the head. MATLAB was used to analyse the Modulation Transfer Function and the Noise Power. Results: The estimated Computed Tomography Dose Index volume (CTDI<sub>vol</sub>) increased with increasing tube current and tube voltage. The high pitch of 0.9 gave a lower dose than the 0.5 pitch. The eye lens received the highest radiation dose (39.2 mGy) whiles the thyroid received the least radiation dose (13.7 mGy). There was an increase in noise (62.46) when the H60 kernel was used and a lower noise (8.829) was noticed when the H30 kernel was used. Conclusion: The results obtained show that the H30 kernel (smooth kernel) gave higher values for noise and contrast to noise ratio (CNR) than the H60 kernel (sharp kernel). The H60 kernel produced high values for the modulation transfer function (MTF) and noise power spectrum (NPS). The eye lens received the highest radiation dose.展开更多
In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer functio...In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.展开更多
Background:The aim of this review is to summarize the optical quality results in patients following the implantation of the V4c implantable collamer lens with a central port(ICL,STAAR Surgical Inc.).Main text:A litera...Background:The aim of this review is to summarize the optical quality results in patients following the implantation of the V4c implantable collamer lens with a central port(ICL,STAAR Surgical Inc.).Main text:A literature search in several databases was carried out to identify those publications,both prospective,retrospective and/or comparative with other refractive surgery procedures,reporting optical outcomes of patients who were implanted with the V4c ICL model.A total of 17 clinical studies published between 2012 and 2021 were included in this review.A detailed analysis of the available data was performed including number of eyes,follow-up and preoperative spherical equivalent.Specifically,the review focused on several optical parameters including higher-order aberrations(HOAs),modulation transfer function(MTF)cut-off frequency and Strehl ratio.This review encompassed a total of 817 eyes measured using different optical devices based on Hartmann-Shack,retinal image quality measurement and ray-tracing technologies at different follow-ups.Conclusions:The outcomes found in this review lead us to conclude that the ICL V4c model provides good optical quality,by means of different metrics,when implanted.展开更多
Background Optical Quality Analysis System II (OQAS, Visiometrics, Terrassa, Spain) that uses double-pass (DP) technique is the only commercially available device that allows objective measurement of ocular retina...Background Optical Quality Analysis System II (OQAS, Visiometrics, Terrassa, Spain) that uses double-pass (DP) technique is the only commercially available device that allows objective measurement of ocular retinal image quality. This study aimed to evaluate the impact of spectacle lenses on the ocular optical quality parameters and the validity of the optometer within OQAS. Methods Seventy eyes of healthy volunteers were enrolled. Optical quality measurements were performed using OQAS with an artificial pupil diameter of 4.0 mm. Three consecutive measurements were obtained from spectacle correction corresponding to subjective refraction and from the OQAS built-in optometer separately. The modulation transfer function cutoff frequency, the Strehl ratio, the width of the point spread function (PSF) at 10% of its maximal height (PSF10), and the width of the PSF at 50% of its maximal height (PSF50) were analyzed. Results There was no significant difference in any of the parameters between the spectacle correction and the optometer correction (all P 〉0.05, paired t-test). A good agreement was found between both the methods and a good intraobserver repeatability in both the correction methods. Difference in best focus between two methods was the only parameter associated significantly with optical quality parameter differences. Best focus difference, built-in optometer correction with or without external cylindrical lens, and age were associated significantly with PSF10 difference. No linear correlation between refractive status and optical quality measurement difference was observed. A hyperopic bias (best focus difference of (0.50±0.44) D) and a relatively better optical quality using spectacle correction in high myopia group were found. Conclusions OQAS based on DP system is a clinically reliable instrument. In patients with high myopia, measurements using built-in optometer correction should be considered and interpreted with caution.展开更多
Background: The aim of this review is to summarize the optical quality results in patients following theimplantation of the V4c implantable collamer lens with a central port (ICL, STAAR Surgical Inc.).Main text: A lit...Background: The aim of this review is to summarize the optical quality results in patients following theimplantation of the V4c implantable collamer lens with a central port (ICL, STAAR Surgical Inc.).Main text: A literature search in several databases was carried out to identify those publications, both prospective,retrospective and/or comparative with other refractive surgery procedures, reporting optical outcomes of patientswho were implanted with the V4c ICL model. A total of 17 clinical studies published between 2012 and 2021 wereincluded in this review. A detailed analysis of the available data was performed including number of eyes, follow-upand preoperative spherical equivalent. Specifically, the review focused on several optical parameters includinghigher-order aberrations (HOAs), modulation transfer function (MTF) cut-off frequency and Strehl ratio. This reviewencompassed a total of 817 eyes measured using different optical devices based on Hartmann-Shack, retinal imagequality measurement and ray-tracing technologies at different follow-ups.Conclusions: The outcomes found in this review lead us to conclude that the ICL V4c model provides good opticalquality, by means of different metrics, when implanted.展开更多
Although the performance of space cameras has largely improved, the micro vibration from flywheel disturbances still significantly affects the image quality of these cameras. This study adopted a passive isolation met...Although the performance of space cameras has largely improved, the micro vibration from flywheel disturbances still significantly affects the image quality of these cameras. This study adopted a passive isolation method to reduce the negative effect of flywheel disturbance on image quality. A metal-rubber shock absorber was designed and installed in a real satellite. A finite element model of an entire satellite was constructed, and a transient analysis was conducted afterward. The change in the modulate transfer function was detected using ray tracing and optical transfer function formulas. Experiments based on real products were performed to validate the influence of the metal-rubber shock absorber. The experimental results confirmed the simulation results by showing that the negative effects of flywheel dis- turbance on the image quality of space cameras can be diminished significantly using the vibration isolation method.展开更多
文摘AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60678043)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions,China (Grant No. CX09B 096Z)
文摘The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 ×10^19 cm 3 electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(Grant No.KGFZD-125-13-006)
文摘The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(Nos.41076119,41176160,41476158)+4 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Natural Science Youth Foundation of Jiangsu Province(No.BK2012467)the Natural Science State Key Foundation of Jiangsu Province(No.BK2011008)the National Natural Science Youth Foundation of China(No.41206171)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(No.S8113078001)
文摘When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.
基金Supported by Wenzhou Science and Technology Commission in 2009, China (No.Y20090384)
文摘AIM:To analyze the retinal modulation transfer function between amblyopes whose visual acuity was corrected to 5.0 and normal subjects at the same age. METHODS: RM-800 used to detect contrast sensitivity was adopted to measure MTF of 96 amblyopes (96 eyes) whose visual acuity was corrected to 5.0 and 80 normal controls (80 eyes) at the same age under six interference fringes (IVA=0.06, 0.1, 0.2, 0.4, 0.6, 0.8). RESULTS: The functional values of amblyopes were significantly lower than those of normal subjects in every fringe (P<0.01), especially in medium and high frequency. CONCLUSION: For amblyopes, MTF was still abnormal after stopping the treatments.
基金Supported by the National High Technology Research and Development Programme of China(No.2012AA12A305)the National Key Technology R&D Program of the Ministry of Science and Technology(No.2013BAH03B01)+1 种基金Fundamental Research Funds for the Central Universities of China(No.2042015kf0059)China Postdoctoral Science Foundation(No.2015M582277)
文摘The key difficulty of restoring a fuzzy image is to estimate its point spread function( PSF). In the paper,PSF is modelled based on modulation transfer function( MTF). The first step is calculating the image MTF. In the traditional slanted-edge method,a sub-block is always manually extracted from original image and its MTF will be viewed as the result of the whole image. However,handcraft extraction is inefficient and will lead to inaccurate results. Given this,an automatic MTF computation algorithm is proposed,which extracts and screens out all the effective sub-blocks and calculates their average MTF as the final result. Then,a two-dimensional MTF restoration model is constructed by multiplying the horizontal and vertical MTF,and it is combined with conventional image restoration methods to restore fuzzy image. Experimental results indicate the proposed method implementes a fast and accurate MTF computation and the MTF model improves the performance of conventional restoration methods significantly.
文摘Background The evaluation of retinal image quality in cataract eyes has gained importance and the clinical modulation transfer functions (MTF) can obtained by aberrometer and double pass (DP) system. This study aimed to compare MTF derived from a ray tracing aberrometer and a DP system in early cataractous and normal eyes. Methods There were 128 subjects with 61 control eyes and 67 eyes with early cataract defined according to the Lens Opacities Classification System II1. A laser ray-tracing wavefront aberrometer (iTrace) and a double pass (DP) system (OQAS) assessed ocular MTF for 6.0 mm pupil diameters following dilation. Areas under the MTF (AUMTF) and their correlations were analyzed. Stepwise multiple regression analysis assessed factors affecting the differences between iTrace- and OQAS-derived AUMTF for the early cataract group. Results For both early cataract and control groups, iTrace-derived MTFs were higher than OQAS-derived MTFs across a range of spatial frequencies (P 〈0.01). No significant difference between the two groups occurred for iTrace-derived AUMTF, but the early cataract group had significantly smaller OQAS-derived AUMTF than did the control group (P 〈0.01). AUMTF determined from both the techniques demonstrated significant correlations with nuclear opacities, higher-order aberrations (HOAs), visual acuity, and contrast sensitivity functions, while the OQAS-derived AUMTF also demonstrated significant correlations with age and cortical opacity grade. The factors significantly affecting the difference between iTrace and OQAS AUMTF were root-mean-squared HOAs (standardized beta coefficient=-0.63, P 〈0.01) and age (standardized beta coefficient=0.26, P 〈0.01). Conclusions MTFs determined from a iTrace and a DP system (OQAS) differ significantly in early cataractous and normal subjects. Correlations with visual performance were higher for the DP system. OQAS-derived MTF may be useful as an indicator of visual performance in early cataract eyes.
文摘The temporal characteristics of GaAs NEA and alkali metal photocathodes are studied using Monte Carlo simulation method. The electron transit time and its distribution functions in the photocathodes are calculated. Based on the results, the time modulation transfer functions and temporal resolutions of the photocathodes are obtained. The results show that the response time and temporal resolution of alkali metal photocathode is in femitosecond order and those of GaAs NEA photocathode are in picosecond order.
基金supported by the National Natural Science Foundation of China(Grant Nos.51079023 and 51221961)the National Basic Research Program of China(973 Program,Grant Nos.2013CB036101 and 2011CB013703)
文摘An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.
文摘Multispectral microscopy enables information enhancement in the study of specimens because of the large spectral band used in this technique. A low cost multimode multispectral microscope using a camera and a set of quasi-monochromatic Light Emitting Diodes (LEDs) ranging from ultraviolet to near-infrared wavelengths as illumination sources was constructed. But the use of a large spectral band provided by non-monochromatic sources induces variation of focal plan of the imager due to chromatic aberration which rises up the diffraction effects and blurs the images causing shadow around them. It results in discrepancies between standard spectra and extracted spectra with microscope. So we need to calibrate that instrument to be a standard one. We proceed with two types of images comparison to choose the reference wavelength for image acquisition where diffraction effect is more reduced. At each wavelength chosen as a reference, one image is well contrasted. First, we compare the thirteen well contrasted images to identify that presenting more reduced shadow. In second time, we determine the mean of the shadow size over the images from each set. The correction of the discrepancies required measurements on filters using a standard spectrometer and the microscope in transmission mode and reflection mode. To evaluate the capacity of our device to transmit information in frequency domain, its modulation transfer function is evaluated. Multivariate analysis is used to test its capacity to recognize properties of well-known sample. The wavelength 700 nm was chosen to be the reference for the image acquisition, because at this wavelength the images are well contrasted. The measurement made on the filters suggested correction coefficients in transmission mode and reflection mode. The experimental instrument recognized the microsphere’s properties and led to the extraction of the standard transmittance and reflectance spectra. Therefore, this microscope is used as a conventional instrument.
基金supported by the National Natural Science Foundation of China (Nos. 4047601 and U0933001)the Key Program of National Natural Science Foundation of China (No. 40830959)
文摘A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modula-tion model is proposed. In this model, the wind surface stress modulation is related to the modulation of ripple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the ripple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.
基金Supported by the High-Tech Research and Development Program of China (863 Program. Nos. 2001AA633070 and 2003AA604040)the National Basic Research Program of China (973 Program, No. 2005CB422307)
文摘The effect of ocean wave breaking as a non-Bragg mechanism on backscattering cross-section and modulation transfer functions (MTF) of radar was investigated based on Bragg resonance theory and parametric method. The result showed that the additional effect of wave breaking on backscattering cross-section is not more than 20% except for the small incident angle of VV polarized electromagnetic (e.m.) wave but is significant for HH polarized e.m. wave. Breaking waves lead to increase in the modulus of tilt modulation MTF and the larger the wind speed, the faster the increase. For large incident angle, the modulus of tilt modulation MTF with wave breaking decreases quickly with incident angle for HH polarization and approach to that without wave breaking for VV polarization. The hydrodynamic MTF increases 30%-60% when considering wave breaking and the increase is larger for HH polarization than for VV polarization.
文摘Existing methods of measurement MTF for discrete imaging system are analysed. A slit target is frequently used to measure the MTF for an imaging system. Usually there are four methods to measure the MTF for a discrete imaging system by using a slit. These methods have something imperfect respectively. But for the discrete imaging systems of under sampling it is difficult to reproduce this type of target properly since frequencies above Nyquist are folded into those below Nyquist, resulting in aliasing effect. To tackle the aliasing problem, a super resolution technique is introduced into our measurement, which gives MTF values both above and below Nyquist more accurately.
文摘Purpose: Children are sometimes examined with Computed Tomography protocols designed for adults, leading to radiation doses higher than necessary. Lack of optimisation could lead to image quality higher than what is needed for diagnostic purposes with associated high doses to patients. Optimising the protocols for paediatric head trauma CT imaging will reduce radiation dose. Objective: The study aimed to optimise radiation dose and assess the image quality for a set of protocols by evaluating noise, a contrast to noise ratio, modulation transfer function and noise power spectrum. Methods: Somaton Sensation 64 was used to scan the head of an anthropomorphic phantom with a set of protocols. ImageJ software was used to analyse the paediatric head image from the scanner. IMPACTSCAN dosimeter software was used to evaluate the radiation dose to the various organs in the head. MATLAB was used to analyse the Modulation Transfer Function and the Noise Power. Results: The estimated Computed Tomography Dose Index volume (CTDI<sub>vol</sub>) increased with increasing tube current and tube voltage. The high pitch of 0.9 gave a lower dose than the 0.5 pitch. The eye lens received the highest radiation dose (39.2 mGy) whiles the thyroid received the least radiation dose (13.7 mGy). There was an increase in noise (62.46) when the H60 kernel was used and a lower noise (8.829) was noticed when the H30 kernel was used. Conclusion: The results obtained show that the H30 kernel (smooth kernel) gave higher values for noise and contrast to noise ratio (CNR) than the H60 kernel (sharp kernel). The H60 kernel produced high values for the modulation transfer function (MTF) and noise power spectrum (NPS). The eye lens received the highest radiation dose.
文摘In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.
文摘Background:The aim of this review is to summarize the optical quality results in patients following the implantation of the V4c implantable collamer lens with a central port(ICL,STAAR Surgical Inc.).Main text:A literature search in several databases was carried out to identify those publications,both prospective,retrospective and/or comparative with other refractive surgery procedures,reporting optical outcomes of patients who were implanted with the V4c ICL model.A total of 17 clinical studies published between 2012 and 2021 were included in this review.A detailed analysis of the available data was performed including number of eyes,follow-up and preoperative spherical equivalent.Specifically,the review focused on several optical parameters including higher-order aberrations(HOAs),modulation transfer function(MTF)cut-off frequency and Strehl ratio.This review encompassed a total of 817 eyes measured using different optical devices based on Hartmann-Shack,retinal image quality measurement and ray-tracing technologies at different follow-ups.Conclusions:The outcomes found in this review lead us to conclude that the ICL V4c model provides good optical quality,by means of different metrics,when implanted.
文摘Background Optical Quality Analysis System II (OQAS, Visiometrics, Terrassa, Spain) that uses double-pass (DP) technique is the only commercially available device that allows objective measurement of ocular retinal image quality. This study aimed to evaluate the impact of spectacle lenses on the ocular optical quality parameters and the validity of the optometer within OQAS. Methods Seventy eyes of healthy volunteers were enrolled. Optical quality measurements were performed using OQAS with an artificial pupil diameter of 4.0 mm. Three consecutive measurements were obtained from spectacle correction corresponding to subjective refraction and from the OQAS built-in optometer separately. The modulation transfer function cutoff frequency, the Strehl ratio, the width of the point spread function (PSF) at 10% of its maximal height (PSF10), and the width of the PSF at 50% of its maximal height (PSF50) were analyzed. Results There was no significant difference in any of the parameters between the spectacle correction and the optometer correction (all P 〉0.05, paired t-test). A good agreement was found between both the methods and a good intraobserver repeatability in both the correction methods. Difference in best focus between two methods was the only parameter associated significantly with optical quality parameter differences. Best focus difference, built-in optometer correction with or without external cylindrical lens, and age were associated significantly with PSF10 difference. No linear correlation between refractive status and optical quality measurement difference was observed. A hyperopic bias (best focus difference of (0.50±0.44) D) and a relatively better optical quality using spectacle correction in high myopia group were found. Conclusions OQAS based on DP system is a clinically reliable instrument. In patients with high myopia, measurements using built-in optometer correction should be considered and interpreted with caution.
文摘Background: The aim of this review is to summarize the optical quality results in patients following theimplantation of the V4c implantable collamer lens with a central port (ICL, STAAR Surgical Inc.).Main text: A literature search in several databases was carried out to identify those publications, both prospective,retrospective and/or comparative with other refractive surgery procedures, reporting optical outcomes of patientswho were implanted with the V4c ICL model. A total of 17 clinical studies published between 2012 and 2021 wereincluded in this review. A detailed analysis of the available data was performed including number of eyes, follow-upand preoperative spherical equivalent. Specifically, the review focused on several optical parameters includinghigher-order aberrations (HOAs), modulation transfer function (MTF) cut-off frequency and Strehl ratio. This reviewencompassed a total of 817 eyes measured using different optical devices based on Hartmann-Shack, retinal imagequality measurement and ray-tracing technologies at different follow-ups.Conclusions: The outcomes found in this review lead us to conclude that the ICL V4c model provides good opticalquality, by means of different metrics, when implanted.
文摘Although the performance of space cameras has largely improved, the micro vibration from flywheel disturbances still significantly affects the image quality of these cameras. This study adopted a passive isolation method to reduce the negative effect of flywheel disturbance on image quality. A metal-rubber shock absorber was designed and installed in a real satellite. A finite element model of an entire satellite was constructed, and a transient analysis was conducted afterward. The change in the modulate transfer function was detected using ray tracing and optical transfer function formulas. Experiments based on real products were performed to validate the influence of the metal-rubber shock absorber. The experimental results confirmed the simulation results by showing that the negative effects of flywheel dis- turbance on the image quality of space cameras can be diminished significantly using the vibration isolation method.