Diode end-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency for laser range finding and warning receiver applications as well as day and night military laser designati...Diode end-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency for laser range finding and warning receiver applications as well as day and night military laser designation systems. In this paper we presents theoretical calculations using Advanced Dynamics Professional LASCAD software and experimental studies for a high power pigtailed fiber diode laser module of 8 W operating at 808 nm with a specially designed high efficiency cooling system, end pumped high-efficiency Nd:YVO4 laser of 3 × 3 × 10 mm rod and overall cavity length of 44 mm. To the best of our knowledge a self Q-switching effects was generated in Nd:YVO4 laser by changing the cavity dimensions and the position of the intracavity KTP crystal at certain regime of operation for the first time, in which the cavity length is reduced to be 30 mm and the distance between Nd:YVO4 rod and KTP crystal is only 1mm. Self Q-switched laser pulse at 532 nm with high peak power of 96 W, pulse width of 88 ns at FWHM and repetition rate of 400 kHz was achieved. Experimental studies of a passive Q-switched Nd:YVO4 laser using Cr:YAG crystal with three different transmissions of 30%, 40% and 70% were investigated. Passive Q-switched laser pulse at 1064 nm and narrow line width of less than 1.5 nm with highest peak power of nearly 18 kW, short pulse width of less than 4 ns at FWHM and higher repetition rate of 45 kHz using Cr:YAG with transmission of 30% was achieved for the first time.展开更多
Numerical simulation of diode-pumped Q-switched Nd:YAG laser leading to the generation of eye-safe signal in singly resonant Intracavity Optical Parametric Oscillator (IOPO) is presented. Starting from rate equations,...Numerical simulation of diode-pumped Q-switched Nd:YAG laser leading to the generation of eye-safe signal in singly resonant Intracavity Optical Parametric Oscillator (IOPO) is presented. Starting from rate equations, the time dependent laser equations have been solved numerically, whereas the space-dependent OPO equations analytically. Our results show that 1.4 J diode laser (810 nm) pulse with 200 msec width, delivers 30 mJ Nd:YAG laser (1064 nm) pulse with 5 n-second width. This Nd:YAG laser further generates 9 mJ eye safe signal (1570 nm) pulse with 2.5 n-second width.展开更多
An injection-seeded single-frequency Q-switched Nd:YAG laser is accomplished by using a phase modulated rampfire technique. A RbTiOPO4(RTP) electro-optic crystal is selected for effective optical path length modula...An injection-seeded single-frequency Q-switched Nd:YAG laser is accomplished by using a phase modulated rampfire technique. A RbTiOPO4(RTP) electro-optic crystal is selected for effective optical path length modulation of the slave self-filtering unstable resonator. This single-frequency laser is capable of producing 50 m J pulse energy at 1 Hz repetition rate with a pulse width of 16 ns. The standard deviation of laser pulse intensity for consecutive 100 shots from the mean pulse intensity is less than 1.05%. A spectral linewidth of less than 0.5 pm with a frequency jitter of about 14 fm over30 min is obtained.展开更多
A quasi-continuous-wave intracavity frequency-doubled Nd:YAG laser which operates at 660 nm is studied. By using a flat-flat laser cavity, 2 Kr-lamps, KTP crystal and an acousto-optically Q-switch, 2-W output power at...A quasi-continuous-wave intracavity frequency-doubled Nd:YAG laser which operates at 660 nm is studied. By using a flat-flat laser cavity, 2 Kr-lamps, KTP crystal and an acousto-optically Q-switch, 2-W output power at 660 nm is obtained. The relationship between laser cavity length and output power is analyzed.展开更多
A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond sig...A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.展开更多
文摘Diode end-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency for laser range finding and warning receiver applications as well as day and night military laser designation systems. In this paper we presents theoretical calculations using Advanced Dynamics Professional LASCAD software and experimental studies for a high power pigtailed fiber diode laser module of 8 W operating at 808 nm with a specially designed high efficiency cooling system, end pumped high-efficiency Nd:YVO4 laser of 3 × 3 × 10 mm rod and overall cavity length of 44 mm. To the best of our knowledge a self Q-switching effects was generated in Nd:YVO4 laser by changing the cavity dimensions and the position of the intracavity KTP crystal at certain regime of operation for the first time, in which the cavity length is reduced to be 30 mm and the distance between Nd:YVO4 rod and KTP crystal is only 1mm. Self Q-switched laser pulse at 532 nm with high peak power of 96 W, pulse width of 88 ns at FWHM and repetition rate of 400 kHz was achieved. Experimental studies of a passive Q-switched Nd:YVO4 laser using Cr:YAG crystal with three different transmissions of 30%, 40% and 70% were investigated. Passive Q-switched laser pulse at 1064 nm and narrow line width of less than 1.5 nm with highest peak power of nearly 18 kW, short pulse width of less than 4 ns at FWHM and higher repetition rate of 45 kHz using Cr:YAG with transmission of 30% was achieved for the first time.
文摘Numerical simulation of diode-pumped Q-switched Nd:YAG laser leading to the generation of eye-safe signal in singly resonant Intracavity Optical Parametric Oscillator (IOPO) is presented. Starting from rate equations, the time dependent laser equations have been solved numerically, whereas the space-dependent OPO equations analytically. Our results show that 1.4 J diode laser (810 nm) pulse with 200 msec width, delivers 30 mJ Nd:YAG laser (1064 nm) pulse with 5 n-second width. This Nd:YAG laser further generates 9 mJ eye safe signal (1570 nm) pulse with 2.5 n-second width.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB1104500 and 2016YFB0701000)
文摘An injection-seeded single-frequency Q-switched Nd:YAG laser is accomplished by using a phase modulated rampfire technique. A RbTiOPO4(RTP) electro-optic crystal is selected for effective optical path length modulation of the slave self-filtering unstable resonator. This single-frequency laser is capable of producing 50 m J pulse energy at 1 Hz repetition rate with a pulse width of 16 ns. The standard deviation of laser pulse intensity for consecutive 100 shots from the mean pulse intensity is less than 1.05%. A spectral linewidth of less than 0.5 pm with a frequency jitter of about 14 fm over30 min is obtained.
文摘A quasi-continuous-wave intracavity frequency-doubled Nd:YAG laser which operates at 660 nm is studied. By using a flat-flat laser cavity, 2 Kr-lamps, KTP crystal and an acousto-optically Q-switch, 2-W output power at 660 nm is obtained. The relationship between laser cavity length and output power is analyzed.
基金supported by the National Natural Science Foundation of China (61378022)the National Natural Science Foundation of China for Youths (61205145)+2 种基金the Fundamental Research Funds of Shandong University (2014JC032)the China Postdoctoral Science Foundation (2013M541901)Independent Innovation Foundation of Shandong University, IIFSDU (2013HW013 and 2014TB011)
文摘A Kerr-lens, mode-locked YVO4∕Nd:YVO4laser coupled with an acousto-optic modulator(AOM) Q-switching near1064 nm was employed to pump an intracavity KTi OPO4(KTP) optical parametric oscillator. A subnanosecond signal wave near 1572 nm with low repetition rate was realized. At an AOM repetition rate of 8 kHz, the maximum output power was 165 mW. The highest average pulse energy, the shortest duration, and the highest peak power of a mode-locking signal pulse were estimated to be ~10.3 μJ, ~120 ps, and ~82 kW, respectively.