The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer ca...The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer can be averaged out,but the G-sensitive drifts of laser gyro cannot be averaged out by indexing.A 16-position rotational simulation experiment proves the G-sensitive drift will affect the long-term navigation error for the rotational INS quantitatively.The vibration coupling and asymmetric structure of the DRLG are the main errors.A new dithered mechanism and optimized DRLG is designed.The validity and efficiency of the optimized design are conformed by 1 g sinusoidal vibration experiments.An optimized inertial measurement unit(IMU)is formulated and measured experimentally.Laboratory and vehicle experimental results show that the divergence speed of longitude errors can be effectively slowed down in the optimized IMU.In long term independent navigation,the position accuracy of dual-axis rotational INS is improved close to 50%,and the G-sensitive drifts of laser gyro in the optimized IMU are less than 0.0002°/h.These results have important theoretical significance and practical value for improving the structural dynamic characteristics of DRLG INS,especially the highprecision inertial system.展开更多
推导了捷联惯导系统(S IN S)误差方程和航位推算(DR)误差方程。建立了S IN S/DR组合导航离散卡尔曼滤波(KF)状态方程和量测方程。最后对S IN S/DR组合导航算法进行了仿真,仿真结果表明:组合系统中部分误差源能够被估计出来并且得到补偿...推导了捷联惯导系统(S IN S)误差方程和航位推算(DR)误差方程。建立了S IN S/DR组合导航离散卡尔曼滤波(KF)状态方程和量测方程。最后对S IN S/DR组合导航算法进行了仿真,仿真结果表明:组合系统中部分误差源能够被估计出来并且得到补偿,因而组合导航效果优于单独的S IN S或DR导航效果。展开更多
基金supported by the National Natural Science Foundation of China(61503399).
文摘The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer can be averaged out,but the G-sensitive drifts of laser gyro cannot be averaged out by indexing.A 16-position rotational simulation experiment proves the G-sensitive drift will affect the long-term navigation error for the rotational INS quantitatively.The vibration coupling and asymmetric structure of the DRLG are the main errors.A new dithered mechanism and optimized DRLG is designed.The validity and efficiency of the optimized design are conformed by 1 g sinusoidal vibration experiments.An optimized inertial measurement unit(IMU)is formulated and measured experimentally.Laboratory and vehicle experimental results show that the divergence speed of longitude errors can be effectively slowed down in the optimized IMU.In long term independent navigation,the position accuracy of dual-axis rotational INS is improved close to 50%,and the G-sensitive drifts of laser gyro in the optimized IMU are less than 0.0002°/h.These results have important theoretical significance and practical value for improving the structural dynamic characteristics of DRLG INS,especially the highprecision inertial system.
文摘推导了捷联惯导系统(S IN S)误差方程和航位推算(DR)误差方程。建立了S IN S/DR组合导航离散卡尔曼滤波(KF)状态方程和量测方程。最后对S IN S/DR组合导航算法进行了仿真,仿真结果表明:组合系统中部分误差源能够被估计出来并且得到补偿,因而组合导航效果优于单独的S IN S或DR导航效果。