Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anteri...AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.展开更多
The modulation transfer spectroscopy in an ytterbium hollow cathode lamp at 399 nm is measured. The error signal for frequency locking is optimized by measuring the dependences of its slope, linewidth and magnitude on...The modulation transfer spectroscopy in an ytterbium hollow cathode lamp at 399 nm is measured. The error signal for frequency locking is optimized by measuring the dependences of its slope, linewidth and magnitude on various parameters. Under the optimum condition, the laser frequency at 399 nm can be stabilized. The long-term stability of laser frequency is measured by monitoring the fluorescence signal of the ytterbium atomic beam induced by the locked laser. The laser frequency is shown to be tightly locked, and the stabilized laser is successfully applied to the cooling of ytterbium atoms.展开更多
The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the fo...The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 ×10^19 cm 3 electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.展开更多
We report construction of an iodine-stabilized laser frequency standard at 532 nm based on modulation transfer spectroscopy(MTS)technology with good reproducibility.A frequency stability of 2.5×10^(-14)at 1 s ave...We report construction of an iodine-stabilized laser frequency standard at 532 nm based on modulation transfer spectroscopy(MTS)technology with good reproducibility.A frequency stability of 2.5×10^(-14)at 1 s averaging time is achieved,and the frequency reproducibility has a relative uncertainty of 3.5×10^(-13),demonstrating the great stability of our setup.The systematic uncertainty of the iodine-stabilized laser frequency standard is evaluated,especially the contribution of the residual amplitude modulation(RAM).The contribution of the RAM in MTS cannot be evaluated directly.To solve this problem,we theoretically deduce the MTS signal with RAM under large modulation depth,and prove that the non-symmetric shape of the MTS signal is directly related to the MTS effect.The non-symmetric shape factor can be calibrated with a frequency comb,and in real experiments,this value can be obtained by least-squares fitting of the MTS signal,from which we can infer the RAMinduced frequency shift.The full frequency uncertainty is evaluated to be 5.3 kHz(corresponding to a relative frequency uncertainty of 9.4×10^(-12)).The corrected transition frequency has a difference from the BIPM-recommended value of 2 kHz,which is within 1σ uncertainty,proving the validity of our evaluation.展开更多
The numerical studies of water–oil two-phase slug flow inside a two-dimensional vertical microchannel subjected to modulated wall temperature boundary conditions have been discussed in the present paper.Many research...The numerical studies of water–oil two-phase slug flow inside a two-dimensional vertical microchannel subjected to modulated wall temperature boundary conditions have been discussed in the present paper.Many researchers have contributed their efforts in exploring the characteristics of Taylor flows inside microchannel under constant wall heat flux or isothermal wall conditions.However,there is no study available in the literature which discusses the impact of modulated thermal wall boundary conditions on the heat transfer behavior of slug flows inside microchannels.Hence,to bridge this gap,an effort has been made to understand the heat transfer characteristics of the flow under sinusoidal wall temperature conditions.Initially,a single phase flow and heat transfer study was performed in microchannels,and the results of the fully developed velocity profile and heat transfer rate were validated with benchmark analytical results.Then an optimal selection of the combination of sinusoidal thermal wall boundary conditions has been made for the two-phase slug flow study.Later,the effects of amplitude(0 bεb 0.03)and frequency(0 bωb 750πrad·s-1)of the sinusoidal wall temperature profile on the heat transfer have been studied using the optimal combination of the wall boundary conditions.The results of the numerical study using modulated temperature conditions on channel walls showed a significant improvement in the heat transfer over liquid-only flow by approximately 50%as well as over two-phase flow without wall temperature modulation.The non-dimensional temperature contours obtained for different cases of temperature modulation clearly explain the root cause of such improvement in the heat transfer.Besides,the results based on the hydrodynamics of the flow have also been reported in terms of variation of droplet shapes and film thickness.The influence of Capillary number on the film thickness as well as heat transfer rates has also been discussed.In addition,the measured film thickness has also been compared with that calculated using standard empirical and analytical models available in the literature.The heat transfer rate obtained from the numerical study for the case of unmodulated wall temperature was found to be in a close match with a phenomenological model to evaluate slug flow heat transfer having a mean absolute deviation of 7.56%.展开更多
AIM:To analyze the retinal modulation transfer function between amblyopes whose visual acuity was corrected to 5.0 and normal subjects at the same age. METHODS: RM-800 used to detect contrast sensitivity was adopted t...AIM:To analyze the retinal modulation transfer function between amblyopes whose visual acuity was corrected to 5.0 and normal subjects at the same age. METHODS: RM-800 used to detect contrast sensitivity was adopted to measure MTF of 96 amblyopes (96 eyes) whose visual acuity was corrected to 5.0 and 80 normal controls (80 eyes) at the same age under six interference fringes (IVA=0.06, 0.1, 0.2, 0.4, 0.6, 0.8). RESULTS: The functional values of amblyopes were significantly lower than those of normal subjects in every fringe (P<0.01), especially in medium and high frequency. CONCLUSION: For amblyopes, MTF was still abnormal after stopping the treatments.展开更多
We present a modulation transfer spectroscopy(MTS) configuration based on an acousto-optic modulator by using a variant of the typical double pass structure. One beam is modulated by using an acousto-optic modulator...We present a modulation transfer spectroscopy(MTS) configuration based on an acousto-optic modulator by using a variant of the typical double pass structure. One beam is modulated by using an acousto-optic modulator in opposite diffraction order to cancel the carrier frequency shift and produce a modulated pump beam. The line shape performance is investigated theoretically and experimentally. Laser frequency stabilization of the proposed configuration is demonstrated for the133 Cs |62 S1/2, F = 4 → |62 P3/2, F = 5 transition. The Allan deviations, which are measured by using beat note signals and the three-cornered hat method, are 3.6×10-11 in an integration time of 100 s and approximately 4×10-11 in a longer integration time.展开更多
The key difficulty of restoring a fuzzy image is to estimate its point spread function( PSF). In the paper,PSF is modelled based on modulation transfer function( MTF). The first step is calculating the image MTF. In t...The key difficulty of restoring a fuzzy image is to estimate its point spread function( PSF). In the paper,PSF is modelled based on modulation transfer function( MTF). The first step is calculating the image MTF. In the traditional slanted-edge method,a sub-block is always manually extracted from original image and its MTF will be viewed as the result of the whole image. However,handcraft extraction is inefficient and will lead to inaccurate results. Given this,an automatic MTF computation algorithm is proposed,which extracts and screens out all the effective sub-blocks and calculates their average MTF as the final result. Then,a two-dimensional MTF restoration model is constructed by multiplying the horizontal and vertical MTF,and it is combined with conventional image restoration methods to restore fuzzy image. Experimental results indicate the proposed method implementes a fast and accurate MTF computation and the MTF model improves the performance of conventional restoration methods significantly.展开更多
When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic...When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.展开更多
Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network....Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated.展开更多
BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs ...BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs pulse-width-modulated (PWM) voltage that applies a higher average voltage to a larger protein species. BlotMan can be controlled not only by its custom-made interface but also by a smart phone via Bluetooth technology. In this study, we examined effects of PWM signals (50%, 60%, and 80% duty cycle) on transfer efficiency and signal intensity in comparison to a constant voltage signal (100% duty cycle). The result revealed that in response to the same average voltage of 150 V, a lower duty cycle with a higher maximum voltage increased transfer efficiency as well as sharpness of transferred proteins. We validated BlotMan’s capability using a chondrosarcoma cell line (SW1353 cells) and a breast cancer cell line (MDA-MB231 cells) in response to antitumor chemical agents. BlotMan successfully generated 5 membranes from a single gel and detected 5 protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2), phosphorylated eIF2, lamin B, and actin. Collectively, we demonstrated herein that BlotMan reduces an amount of protein samples by generating multiple membranes from a single gel and improving signal intensity with PWM voltage signals.展开更多
In this paper,a novel pulse density modulation(PDM)with semi-bridgeless active rectifier(S-BAR)in inductive power transfer(IPT)system for rail vehicle is proposed.It is to reduce switching losses of the active rectifi...In this paper,a novel pulse density modulation(PDM)with semi-bridgeless active rectifier(S-BAR)in inductive power transfer(IPT)system for rail vehicle is proposed.It is to reduce switching losses of the active rectifier in pickups.In the control method,the insulated-gate bipolar transistors(IGBTs)in the S-BAR are controlled by synchronous PDM signals,so that zero-voltage switching(ZVS)and zero-current switching(ZCS)can be achieved in the whole output power range.The output power is regulated by changing the pulse density(PD)of the S-BAR since the it is almost linear proportional with the PD in high quality factor of pickup side.The communication device between the primary side and pickup side is not necessary anymore.The detailed theoretical analyses of the PDM method are provided,and its advantages are shown in a 7.5kW IPT prototype for rail vehicle.The experimental results are presented to verify the analysis and demonstrate the performance.The overall efficiency of the system by PDM control is 74.2%which is improved by 4%compared with phase shift(PS)control at light load.展开更多
In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC compon...In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.展开更多
A series of experiments on the instability of steeP water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of...A series of experiments on the instability of steeP water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of modulational instability and class-Ⅱ instability, the initial two-dimensional steep wave trains evolved into three'dimensional crescent waves, followed by the occurrence of disordered water surfaces, and that the wave energy transferred to sidebands in the amplitude spectrum of the water surface elevation. The results also show that water depth has a significant effect on the growth of modulational instability and the evolutiin of crescent waves. The larger the water depth, the more quickly the modulational instability suppresses class-II instability.展开更多
Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penet...Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.展开更多
The reverse osmosis process has been applied in large industrial fields (water treatment, food industry, biotechnology, and ect.). Despite, this progress more investigation are required to optimize the reverse osmos...The reverse osmosis process has been applied in large industrial fields (water treatment, food industry, biotechnology, and ect.). Despite, this progress more investigation are required to optimize the reverse osmosis process. The present paper deals the modeling of mass transfer in a cavity limited by a semi-permeable membrane. Mass conservation and momentum balances are developed, dimensionless and control volume method has been applied. The velocity and concentration profiles versus the Reynolds number and Sherwood are studied. The results show that the permeability of the membrane decreases as function of the transversal (radial) component of the velocity. The axial (tangential) component of the velocity presents a good stability along the thickness of the cavity; this phenomenon can be attributed to the zero gradient of the tangential velocity. These preliminary results show that the phenomenon of the concentration polarization affects the mass transfer coefficient in a channel. Current study has considered the cavity without a promoter of the turbulence; whereas, the design of the spacer has an important role on mass transfer coefficient in the reverse osmosis module. Our next interest is the integration of the spacer in the cavity, and the study of the effect of its design on the concentration and velocity profiles and the mass transfer coefficient through the reverse osmosis membrane.展开更多
Precise control over the photoluminescence(PL) of single quantum dots(QDs) is important for their practical applications. We show that the PL of individual Cd Se/Zn S core/shell QDs can be effectively enhanced and...Precise control over the photoluminescence(PL) of single quantum dots(QDs) is important for their practical applications. We show that the PL of individual Cd Se/Zn S core/shell QDs can be effectively enhanced and continuously modulated by electrochemically manipulating the electron transfer(ET) between the QDs and the attached redox-active ligands such as 2-mercaptoethanol(BME). We found that i) the ET from BME to the QDs' surface trap states suppresses the blinking of the QDs, ii) the ET from the QDs' conduction band to the oxidization product results in dimmed PL when BME is oxidized,and iii) further oxidization of BME results in a significant PL brightening. The single particle measurements help us unveil the important features hidden in ensemble measurements and understand the underlying mechanism of the PL modulation.The results also suggest a simple yet efficient method to produce bright and non-blinking QDs and offer opportunities for further development of high resolution fluorescent bioimaging and nanodevices.展开更多
A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modula-tion model is proposed. In this model, the wind surface stress modulation is related to the modulation...A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modula-tion model is proposed. In this model, the wind surface stress modulation is related to the modulation of ripple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the ripple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.展开更多
OBJECTIVE The chemokine-like receptor 1(CMKLR1,Chem R23) is a functional receptor for chemerin,the chemerin-derived nonapeptide(C9),and the amyloid β peptide 1-42(Aβ_(42)).Because these peptides share little sequenc...OBJECTIVE The chemokine-like receptor 1(CMKLR1,Chem R23) is a functional receptor for chemerin,the chemerin-derived nonapeptide(C9),and the amyloid β peptide 1-42(Aβ_(42)).Because these peptides share little sequence homology,studies were conducted to investigate their pharmacological properties and regulation at CMKLR1.METHODS Cells expressing CMKLR1 were incubated with Aβ_(42) before stimulation with a strong agonist,the C9 peptide.Calcium mobilization,c AMP inhibition and MAP kinase activation were measured.Intramolecular FRET were determined using CMKLR1 constructs with an ECFP attached to the C-terminus and a Fl As H binding motif embedded in the first intracellular loop(IL1).RESULTS Binding of both Aβ_(42) and the C9 peptide induced CMKLR1 internalization,but only the Aβ_(42)-induced receptor internalization involved clathrin-coated pits.Likewise,Aβ_(42) but not C9 stimulated β-arrestin 2 translocation to plasma membranes.A robust Ca^(2+)flux was observed following C9 stimulation,whereas Aβ_(42) was ineffective even at micromolar concentrations.Despite its low potency in calcium mobilization assay,Aβ_(42) was able to alter C9-induced Ca^(2+) flux in dose-dependent manner:a potentiation effect at 100 pmol·L^(-1) of Aβ_(42) was followed by a suppression at 10 nmol·L^(-1) and further potentiation at 1 μmol·L^(-1).This unusual and biphasic modulatory effect was also seen in the C9-induced ERK phosphorylation but the dose curve was opposite to that of Ca^(2+) flux and c AMP inhibition,suggesting a reciprocal regulatory mechanism.Intramolecular FRET assay confirmed that Aβ_(42) modulates CMKLR1 rather than its downstream signaling pathways.CONCLUSION These findings suggest Aβ_(42) as an allosteric modulator that can both positively and negatively regulate the activation state of CMKLR1 in a manner that differs from existing allosteric modulatory mechanisms.展开更多
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
文摘AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774044)the National Key Basic Research and Development Program of China(Grant No.2010CB922903)+1 种基金the Science and Technology Commission of Shanghai Municipality of China(Grant No.07JC14019)Shanghai Pujiang Talent Program of China(Grant No.07PJ14038)
文摘The modulation transfer spectroscopy in an ytterbium hollow cathode lamp at 399 nm is measured. The error signal for frequency locking is optimized by measuring the dependences of its slope, linewidth and magnitude on various parameters. Under the optimum condition, the laser frequency at 399 nm can be stabilized. The long-term stability of laser frequency is measured by monitoring the fluorescence signal of the ytterbium atomic beam induced by the locked laser. The laser frequency is shown to be tightly locked, and the stabilized laser is successfully applied to the cooling of ytterbium atoms.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60678043)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions,China (Grant No. CX09B 096Z)
文摘The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 ×10^19 cm 3 electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.
基金the National Key Research and Development Program of China(Grant No.2017YFA0304401)Key-Area Research and Development Program of GuangDong Province,China(Grant No.2019B030330001)the National Natural Science Foundation of China(Grant Nos.11174095,61875065,91536116,and 11804108).
文摘We report construction of an iodine-stabilized laser frequency standard at 532 nm based on modulation transfer spectroscopy(MTS)technology with good reproducibility.A frequency stability of 2.5×10^(-14)at 1 s averaging time is achieved,and the frequency reproducibility has a relative uncertainty of 3.5×10^(-13),demonstrating the great stability of our setup.The systematic uncertainty of the iodine-stabilized laser frequency standard is evaluated,especially the contribution of the residual amplitude modulation(RAM).The contribution of the RAM in MTS cannot be evaluated directly.To solve this problem,we theoretically deduce the MTS signal with RAM under large modulation depth,and prove that the non-symmetric shape of the MTS signal is directly related to the MTS effect.The non-symmetric shape factor can be calibrated with a frequency comb,and in real experiments,this value can be obtained by least-squares fitting of the MTS signal,from which we can infer the RAMinduced frequency shift.The full frequency uncertainty is evaluated to be 5.3 kHz(corresponding to a relative frequency uncertainty of 9.4×10^(-12)).The corrected transition frequency has a difference from the BIPM-recommended value of 2 kHz,which is within 1σ uncertainty,proving the validity of our evaluation.
文摘The numerical studies of water–oil two-phase slug flow inside a two-dimensional vertical microchannel subjected to modulated wall temperature boundary conditions have been discussed in the present paper.Many researchers have contributed their efforts in exploring the characteristics of Taylor flows inside microchannel under constant wall heat flux or isothermal wall conditions.However,there is no study available in the literature which discusses the impact of modulated thermal wall boundary conditions on the heat transfer behavior of slug flows inside microchannels.Hence,to bridge this gap,an effort has been made to understand the heat transfer characteristics of the flow under sinusoidal wall temperature conditions.Initially,a single phase flow and heat transfer study was performed in microchannels,and the results of the fully developed velocity profile and heat transfer rate were validated with benchmark analytical results.Then an optimal selection of the combination of sinusoidal thermal wall boundary conditions has been made for the two-phase slug flow study.Later,the effects of amplitude(0 bεb 0.03)and frequency(0 bωb 750πrad·s-1)of the sinusoidal wall temperature profile on the heat transfer have been studied using the optimal combination of the wall boundary conditions.The results of the numerical study using modulated temperature conditions on channel walls showed a significant improvement in the heat transfer over liquid-only flow by approximately 50%as well as over two-phase flow without wall temperature modulation.The non-dimensional temperature contours obtained for different cases of temperature modulation clearly explain the root cause of such improvement in the heat transfer.Besides,the results based on the hydrodynamics of the flow have also been reported in terms of variation of droplet shapes and film thickness.The influence of Capillary number on the film thickness as well as heat transfer rates has also been discussed.In addition,the measured film thickness has also been compared with that calculated using standard empirical and analytical models available in the literature.The heat transfer rate obtained from the numerical study for the case of unmodulated wall temperature was found to be in a close match with a phenomenological model to evaluate slug flow heat transfer having a mean absolute deviation of 7.56%.
基金Supported by Wenzhou Science and Technology Commission in 2009, China (No.Y20090384)
文摘AIM:To analyze the retinal modulation transfer function between amblyopes whose visual acuity was corrected to 5.0 and normal subjects at the same age. METHODS: RM-800 used to detect contrast sensitivity was adopted to measure MTF of 96 amblyopes (96 eyes) whose visual acuity was corrected to 5.0 and 80 normal controls (80 eyes) at the same age under six interference fringes (IVA=0.06, 0.1, 0.2, 0.4, 0.6, 0.8). RESULTS: The functional values of amblyopes were significantly lower than those of normal subjects in every fringe (P<0.01), especially in medium and high frequency. CONCLUSION: For amblyopes, MTF was still abnormal after stopping the treatments.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0302101)the Foundation of China Academy of Space Technologythe Initiative Program of State Key Laboratory of Precision Measurement Technology and Instruments,China
文摘We present a modulation transfer spectroscopy(MTS) configuration based on an acousto-optic modulator by using a variant of the typical double pass structure. One beam is modulated by using an acousto-optic modulator in opposite diffraction order to cancel the carrier frequency shift and produce a modulated pump beam. The line shape performance is investigated theoretically and experimentally. Laser frequency stabilization of the proposed configuration is demonstrated for the133 Cs |62 S1/2, F = 4 → |62 P3/2, F = 5 transition. The Allan deviations, which are measured by using beat note signals and the three-cornered hat method, are 3.6×10-11 in an integration time of 100 s and approximately 4×10-11 in a longer integration time.
基金Supported by the National High Technology Research and Development Programme of China(No.2012AA12A305)the National Key Technology R&D Program of the Ministry of Science and Technology(No.2013BAH03B01)+1 种基金Fundamental Research Funds for the Central Universities of China(No.2042015kf0059)China Postdoctoral Science Foundation(No.2015M582277)
文摘The key difficulty of restoring a fuzzy image is to estimate its point spread function( PSF). In the paper,PSF is modelled based on modulation transfer function( MTF). The first step is calculating the image MTF. In the traditional slanted-edge method,a sub-block is always manually extracted from original image and its MTF will be viewed as the result of the whole image. However,handcraft extraction is inefficient and will lead to inaccurate results. Given this,an automatic MTF computation algorithm is proposed,which extracts and screens out all the effective sub-blocks and calculates their average MTF as the final result. Then,a two-dimensional MTF restoration model is constructed by multiplying the horizontal and vertical MTF,and it is combined with conventional image restoration methods to restore fuzzy image. Experimental results indicate the proposed method implementes a fast and accurate MTF computation and the MTF model improves the performance of conventional restoration methods significantly.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(Nos.41076119,41176160,41476158)+4 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Natural Science Youth Foundation of Jiangsu Province(No.BK2012467)the Natural Science State Key Foundation of Jiangsu Province(No.BK2011008)the National Natural Science Youth Foundation of China(No.41206171)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(No.S8113078001)
文摘When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.
基金the financial support of National Natural Science Foundation of China(NSFC),Grant No.61971102,61871076the Key Research and Development Program of Zhejiang Province under Grant No.2022C01093.
文摘Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated.
文摘BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs pulse-width-modulated (PWM) voltage that applies a higher average voltage to a larger protein species. BlotMan can be controlled not only by its custom-made interface but also by a smart phone via Bluetooth technology. In this study, we examined effects of PWM signals (50%, 60%, and 80% duty cycle) on transfer efficiency and signal intensity in comparison to a constant voltage signal (100% duty cycle). The result revealed that in response to the same average voltage of 150 V, a lower duty cycle with a higher maximum voltage increased transfer efficiency as well as sharpness of transferred proteins. We validated BlotMan’s capability using a chondrosarcoma cell line (SW1353 cells) and a breast cancer cell line (MDA-MB231 cells) in response to antitumor chemical agents. BlotMan successfully generated 5 membranes from a single gel and detected 5 protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2), phosphorylated eIF2, lamin B, and actin. Collectively, we demonstrated herein that BlotMan reduces an amount of protein samples by generating multiple membranes from a single gel and improving signal intensity with PWM voltage signals.
文摘In this paper,a novel pulse density modulation(PDM)with semi-bridgeless active rectifier(S-BAR)in inductive power transfer(IPT)system for rail vehicle is proposed.It is to reduce switching losses of the active rectifier in pickups.In the control method,the insulated-gate bipolar transistors(IGBTs)in the S-BAR are controlled by synchronous PDM signals,so that zero-voltage switching(ZVS)and zero-current switching(ZCS)can be achieved in the whole output power range.The output power is regulated by changing the pulse density(PD)of the S-BAR since the it is almost linear proportional with the PD in high quality factor of pickup side.The communication device between the primary side and pickup side is not necessary anymore.The detailed theoretical analyses of the PDM method are provided,and its advantages are shown in a 7.5kW IPT prototype for rail vehicle.The experimental results are presented to verify the analysis and demonstrate the performance.The overall efficiency of the system by PDM control is 74.2%which is improved by 4%compared with phase shift(PS)control at light load.
基金supported by National Natural Science Foundation of China(No.61571061)
文摘In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.
基金supported by the National Natural Science Foundation of China(Grant No.51079024)the National Foundation for Creative Research Groups(Grant No.50921001)
文摘A series of experiments on the instability of steeP water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of modulational instability and class-Ⅱ instability, the initial two-dimensional steep wave trains evolved into three'dimensional crescent waves, followed by the occurrence of disordered water surfaces, and that the wave energy transferred to sidebands in the amplitude spectrum of the water surface elevation. The results also show that water depth has a significant effect on the growth of modulational instability and the evolutiin of crescent waves. The larger the water depth, the more quickly the modulational instability suppresses class-II instability.
基金Supported by the Hi-Tech. Research and Development Program of China (863) (2002AA649280, 2002AA304030), National Natural Science Foundation of China (No. 20206002), Beijing NOVA program (H013610250112), University Postdoctrate Research Foundation of Chin
文摘Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.
文摘The reverse osmosis process has been applied in large industrial fields (water treatment, food industry, biotechnology, and ect.). Despite, this progress more investigation are required to optimize the reverse osmosis process. The present paper deals the modeling of mass transfer in a cavity limited by a semi-permeable membrane. Mass conservation and momentum balances are developed, dimensionless and control volume method has been applied. The velocity and concentration profiles versus the Reynolds number and Sherwood are studied. The results show that the permeability of the membrane decreases as function of the transversal (radial) component of the velocity. The axial (tangential) component of the velocity presents a good stability along the thickness of the cavity; this phenomenon can be attributed to the zero gradient of the tangential velocity. These preliminary results show that the phenomenon of the concentration polarization affects the mass transfer coefficient in a channel. Current study has considered the cavity without a promoter of the turbulence; whereas, the design of the spacer has an important role on mass transfer coefficient in the reverse osmosis module. Our next interest is the integration of the spacer in the cavity, and the study of the effect of its design on the concentration and velocity profiles and the mass transfer coefficient through the reverse osmosis membrane.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10904164,61275192,and 11104328)
文摘Precise control over the photoluminescence(PL) of single quantum dots(QDs) is important for their practical applications. We show that the PL of individual Cd Se/Zn S core/shell QDs can be effectively enhanced and continuously modulated by electrochemically manipulating the electron transfer(ET) between the QDs and the attached redox-active ligands such as 2-mercaptoethanol(BME). We found that i) the ET from BME to the QDs' surface trap states suppresses the blinking of the QDs, ii) the ET from the QDs' conduction band to the oxidization product results in dimmed PL when BME is oxidized,and iii) further oxidization of BME results in a significant PL brightening. The single particle measurements help us unveil the important features hidden in ensemble measurements and understand the underlying mechanism of the PL modulation.The results also suggest a simple yet efficient method to produce bright and non-blinking QDs and offer opportunities for further development of high resolution fluorescent bioimaging and nanodevices.
基金supported by the National Natural Science Foundation of China (Nos. 4047601 and U0933001)the Key Program of National Natural Science Foundation of China (No. 40830959)
文摘A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modula-tion model is proposed. In this model, the wind surface stress modulation is related to the modulation of ripple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the ripple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.
基金supported by National Natural Science Foundation of China(31470856 to RDY)the Science and Technology Development Fund of Macao(FDCT 072/2015/A2)the University of Macao(SRG2015-00047-ICMS-QRCM)
文摘OBJECTIVE The chemokine-like receptor 1(CMKLR1,Chem R23) is a functional receptor for chemerin,the chemerin-derived nonapeptide(C9),and the amyloid β peptide 1-42(Aβ_(42)).Because these peptides share little sequence homology,studies were conducted to investigate their pharmacological properties and regulation at CMKLR1.METHODS Cells expressing CMKLR1 were incubated with Aβ_(42) before stimulation with a strong agonist,the C9 peptide.Calcium mobilization,c AMP inhibition and MAP kinase activation were measured.Intramolecular FRET were determined using CMKLR1 constructs with an ECFP attached to the C-terminus and a Fl As H binding motif embedded in the first intracellular loop(IL1).RESULTS Binding of both Aβ_(42) and the C9 peptide induced CMKLR1 internalization,but only the Aβ_(42)-induced receptor internalization involved clathrin-coated pits.Likewise,Aβ_(42) but not C9 stimulated β-arrestin 2 translocation to plasma membranes.A robust Ca^(2+)flux was observed following C9 stimulation,whereas Aβ_(42) was ineffective even at micromolar concentrations.Despite its low potency in calcium mobilization assay,Aβ_(42) was able to alter C9-induced Ca^(2+) flux in dose-dependent manner:a potentiation effect at 100 pmol·L^(-1) of Aβ_(42) was followed by a suppression at 10 nmol·L^(-1) and further potentiation at 1 μmol·L^(-1).This unusual and biphasic modulatory effect was also seen in the C9-induced ERK phosphorylation but the dose curve was opposite to that of Ca^(2+) flux and c AMP inhibition,suggesting a reciprocal regulatory mechanism.Intramolecular FRET assay confirmed that Aβ_(42) modulates CMKLR1 rather than its downstream signaling pathways.CONCLUSION These findings suggest Aβ_(42) as an allosteric modulator that can both positively and negatively regulate the activation state of CMKLR1 in a manner that differs from existing allosteric modulatory mechanisms.