Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained ...Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.展开更多
This paper presents a Torque Sharing Function(TSF)control of Switched Reluctance Machines(SRMs)with different current sensor placements to reconstruct the phase currents.TSF requires precise phase current information ...This paper presents a Torque Sharing Function(TSF)control of Switched Reluctance Machines(SRMs)with different current sensor placements to reconstruct the phase currents.TSF requires precise phase current information to ensure accurate torque control.Two proposed methods with different chopping transistors or a new PWM implementation require four or two current sensors to replace the current sensors on each phase regardless of the phase number.For both approaches,the actual phase current can be easily extracted during the single phase conducting region.However,how to separate the incoming and outgoing phase current values during the commutation region is the difficult issue to deal with.In order to derive these two adjacent currents,the explanations and comparisons of two proposed methods are described.Their effectiveness is verified by experimental results on a four-phase 8/6 SRM.Finally,the approach with a new PWM implementation is selected,which requires only two current sensors for reducing the number of sensors.The control system can be more compact and cheaper.展开更多
The concept of connecting two boost half bridge DC-DC converter modules in input-paral- lel output-parallel configuration is presented. The input-parallel-output-parallel (IPOP) converter consists of multiple boost ...The concept of connecting two boost half bridge DC-DC converter modules in input-paral- lel output-parallel configuration is presented. The input-parallel-output-parallel (IPOP) converter consists of multiple boost half bridge (BHB) DC-DC converter modules which are connected in par- allel at the input and output side. This kind of converter is an attractive solution for high power ap- plications. The correlation between input current sharing (ICS) and output current sharing (OCS) of the IPOP converter basic modules is described. Two loop control strategies, consisting of input cur- rent loop and output voltage loop, have been developed to achieve equal ICS and OCS in this present work. The control strategy for the IPOP configuration of boost haft bridge DC-DC converter has been verified for different load conditions (half load and full load), The IPOP system proposed here is comprising of two modules but it can be extended to three or more. The performance of the pro- posed system along with the control strategy is verified by simulation in MATLAB using Simpower tool. Finally the satisfactory simulation results are obtained.展开更多
A deconpling control strategy of inverter parallel system is proposed based on the equivalent output impedance of single phase voltage source SPWM (sinusoidal pulse width modulation) inverter. The active power and r...A deconpling control strategy of inverter parallel system is proposed based on the equivalent output impedance of single phase voltage source SPWM (sinusoidal pulse width modulation) inverter. The active power and reactive power are calculated in terms of output voltage and current of the inverter, and sent to the other inverters in the parallel system via controller area network (CAN) bus. By calculating and decoupling the circumfluence of the active power and reactive power, the inverters can share load current via the regulation of the reference-signal phase and amplitude. Experimental results of an 110V/2kVA inverter parallel system show the feasibility of the decoupling control strategy.展开更多
文摘Multi-modular system plays an important role in power system architecture because low voltage and low power converters can be connected in any combination parallel or series at input/ output side in order to obtained any given power system specifications. Multi-modular boost haft bridge DC-DC converter in the configuration of input series output parallel has been investigated in this paper. The boost half bridge DC-DC converters are connected in input series output parallel con- figuration in order to achieve equal input voltage sharing and output current sharing between the con- verters. This can be achieved with the help of dynamic control scheme which consists of two loops, a voltage loop and a current loop, for each module. Dynamic behavior of multi-modular converter configuration has been observe by varying the load condition. Moreover, the results obtained through multi-modular converter describe that the system has good dynamic and steady state response. Al- though two converter modules are focused in this paper but it can be modified to any number of modules.
基金The test bench was supported by The Future Planning(NRF-2016H1D5A1910536)“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20164010200940)The authors would like to thank FONDS DAVID ET ALICE VAN BUUREN and FONDATION JAUMOTTE-DEMOULIN for the funding“Prix Van Buuren-Jaumotte-Demoulin”.
文摘This paper presents a Torque Sharing Function(TSF)control of Switched Reluctance Machines(SRMs)with different current sensor placements to reconstruct the phase currents.TSF requires precise phase current information to ensure accurate torque control.Two proposed methods with different chopping transistors or a new PWM implementation require four or two current sensors to replace the current sensors on each phase regardless of the phase number.For both approaches,the actual phase current can be easily extracted during the single phase conducting region.However,how to separate the incoming and outgoing phase current values during the commutation region is the difficult issue to deal with.In order to derive these two adjacent currents,the explanations and comparisons of two proposed methods are described.Their effectiveness is verified by experimental results on a four-phase 8/6 SRM.Finally,the approach with a new PWM implementation is selected,which requires only two current sensors for reducing the number of sensors.The control system can be more compact and cheaper.
文摘The concept of connecting two boost half bridge DC-DC converter modules in input-paral- lel output-parallel configuration is presented. The input-parallel-output-parallel (IPOP) converter consists of multiple boost half bridge (BHB) DC-DC converter modules which are connected in par- allel at the input and output side. This kind of converter is an attractive solution for high power ap- plications. The correlation between input current sharing (ICS) and output current sharing (OCS) of the IPOP converter basic modules is described. Two loop control strategies, consisting of input cur- rent loop and output voltage loop, have been developed to achieve equal ICS and OCS in this present work. The control strategy for the IPOP configuration of boost haft bridge DC-DC converter has been verified for different load conditions (half load and full load), The IPOP system proposed here is comprising of two modules but it can be extended to three or more. The performance of the pro- posed system along with the control strategy is verified by simulation in MATLAB using Simpower tool. Finally the satisfactory simulation results are obtained.
基金supported by the National Natural Science Foundation of China under Grant No 50677056
文摘A deconpling control strategy of inverter parallel system is proposed based on the equivalent output impedance of single phase voltage source SPWM (sinusoidal pulse width modulation) inverter. The active power and reactive power are calculated in terms of output voltage and current of the inverter, and sent to the other inverters in the parallel system via controller area network (CAN) bus. By calculating and decoupling the circumfluence of the active power and reactive power, the inverters can share load current via the regulation of the reference-signal phase and amplitude. Experimental results of an 110V/2kVA inverter parallel system show the feasibility of the decoupling control strategy.