A simple and fast route for the synthesis of metal-organic framework(MOF) particles was presented.Cu 3(BTC) 2(HKUST-1,BTC=1,3,5-benzenetricarboxylate),one of the most well-known MOFs,was synthesized at room temp...A simple and fast route for the synthesis of metal-organic framework(MOF) particles was presented.Cu 3(BTC) 2(HKUST-1,BTC=1,3,5-benzenetricarboxylate),one of the most well-known MOFs,was synthesized at room temperature via coordination modulation method.By adding different modulators(monocarboxylic acids) into the reaction system,the morphologies of HKUST-1 crystals were tuned from nano spheres to micro octahedrons at room temperature without any complex equipment.X-Ray diffractions and gas sorption measurements revealed highly crystalline particles with large Brunauer-Emmett-Teller(BET) surface areas(1116―1273 m^ 2 /g) and total pore volumes(0.62―0.73 cm^ 3 /g).The significantly small particle sizes and high capacity of gas sorption are considered advantageous for envisaged application in practical industrial process.展开更多
The implementation of metal organic frameworks(MOFs) as the co-catalysts in hybrid photocatalytic systems puts requirements on both their charge-carrying capability and solvent stability. In the current study, in orde...The implementation of metal organic frameworks(MOFs) as the co-catalysts in hybrid photocatalytic systems puts requirements on both their charge-carrying capability and solvent stability. In the current study, in order to simultaneously promote the electrical conductivity and water stability of ZIF-67, an insitu monomer trapping strategy is deployed to synthesize polypyrrole(PPy)-reinforced ZIF-67 ensembles.Through coordination modulation, the incremental addition of pyrrole monomers enables to alter the crystal morphology of ZIF-67 from rhombic dodecahedra to truncated rhombic dodecahedra, and further to cubes. Upon polymerization, the resulted composite, in comparison to ZIF-67, demonstrates a billionfold conductivity enhancement, much improved chemical stability in pronated solvents, as well as largely retained specific surface area and porosity, enabling it functioning as an outstanding co-catalyst for catalyzing robust photocatalytic CO_(2) reduction. Furthermore, a PPy-mediated electron harvest and relay mechanism is proposed for rationalizing the enhanced photocatalytic performance.展开更多
Powered by electricity from renewable energies,electrochemical reduction of CO_(2)could not only efficiently alleviate the excess emission of CO_(2),but also produce many kinds of valuable chemical feedstocks.Among va...Powered by electricity from renewable energies,electrochemical reduction of CO_(2)could not only efficiently alleviate the excess emission of CO_(2),but also produce many kinds of valuable chemical feedstocks.Among various catalysts,single atom catalysts(SACs)have attracted much attention due to their high atom utilization efficiency and expressive catalytic performances.Additionally,SACs serve as an ideal platform for the investigation of complex reaction pathways and mechanisms thanks to their explicit active sites.In this review,the possible re-action pathways for the generation of various products(mainly C1 products for SACs)were firstly summarized.Then,recent progress of SACs for electrochemical reduction of CO_(2)was discussed in aspect of different central metal sites.As the most popular and efficient coordination modulation strategy,introducing heteroatom was then reviewed.Moreover,as an extension of SACs,the development of dual atom catalysts was also briefly discussed.At last,some issues and challenges regarding the SACs for CO_(2)reduction reaction(CO_(2)RR)were listed,followed by corresponding suggestions.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.21173034,20907006)
文摘A simple and fast route for the synthesis of metal-organic framework(MOF) particles was presented.Cu 3(BTC) 2(HKUST-1,BTC=1,3,5-benzenetricarboxylate),one of the most well-known MOFs,was synthesized at room temperature via coordination modulation method.By adding different modulators(monocarboxylic acids) into the reaction system,the morphologies of HKUST-1 crystals were tuned from nano spheres to micro octahedrons at room temperature without any complex equipment.X-Ray diffractions and gas sorption measurements revealed highly crystalline particles with large Brunauer-Emmett-Teller(BET) surface areas(1116―1273 m^ 2 /g) and total pore volumes(0.62―0.73 cm^ 3 /g).The significantly small particle sizes and high capacity of gas sorption are considered advantageous for envisaged application in practical industrial process.
基金supported by the National Natural Science Foundation of China (Nos. 22072101, 22075193, 51911540473)the Natural Science Research Project of Jiangsu Higher Education Institutions of China (18KJA480004)+2 种基金the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau (SYG201934) Six Talent Peaks Project in Jiangsu Province (TD-XCL-006)the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutionsthe support from the Honorary Professor Program of Jiangsu Province。
文摘The implementation of metal organic frameworks(MOFs) as the co-catalysts in hybrid photocatalytic systems puts requirements on both their charge-carrying capability and solvent stability. In the current study, in order to simultaneously promote the electrical conductivity and water stability of ZIF-67, an insitu monomer trapping strategy is deployed to synthesize polypyrrole(PPy)-reinforced ZIF-67 ensembles.Through coordination modulation, the incremental addition of pyrrole monomers enables to alter the crystal morphology of ZIF-67 from rhombic dodecahedra to truncated rhombic dodecahedra, and further to cubes. Upon polymerization, the resulted composite, in comparison to ZIF-67, demonstrates a billionfold conductivity enhancement, much improved chemical stability in pronated solvents, as well as largely retained specific surface area and porosity, enabling it functioning as an outstanding co-catalyst for catalyzing robust photocatalytic CO_(2) reduction. Furthermore, a PPy-mediated electron harvest and relay mechanism is proposed for rationalizing the enhanced photocatalytic performance.
文摘Powered by electricity from renewable energies,electrochemical reduction of CO_(2)could not only efficiently alleviate the excess emission of CO_(2),but also produce many kinds of valuable chemical feedstocks.Among various catalysts,single atom catalysts(SACs)have attracted much attention due to their high atom utilization efficiency and expressive catalytic performances.Additionally,SACs serve as an ideal platform for the investigation of complex reaction pathways and mechanisms thanks to their explicit active sites.In this review,the possible re-action pathways for the generation of various products(mainly C1 products for SACs)were firstly summarized.Then,recent progress of SACs for electrochemical reduction of CO_(2)was discussed in aspect of different central metal sites.As the most popular and efficient coordination modulation strategy,introducing heteroatom was then reviewed.Moreover,as an extension of SACs,the development of dual atom catalysts was also briefly discussed.At last,some issues and challenges regarding the SACs for CO_(2)reduction reaction(CO_(2)RR)were listed,followed by corresponding suggestions.