Comprehensive Summary,The charge transport through peptides can imitate the corresponding processes in more complicated proteins,enabling us to develop high-performance bioelectronic devices and to understand the mech...Comprehensive Summary,The charge transport through peptides can imitate the corresponding processes in more complicated proteins,enabling us to develop high-performance bioelectronic devices and to understand the mechanisms of biomolecular recognition and information transfer.While charge transport modulation through individual peptides has been achieved via various covalent strategies,the intermolecular modulation is still very challenging,which may capture the charge transport between proteins.To tackle this challenge,we used well-defined self-assembled monolayers(SAMs)of oligopeptides as a model to imitate the interface of proteins and explored an interfacial amino acid strategy for charge transport modulation.We showed that non-covalently interfaced charged amino acids(e.g.,arginine)effectively attenuated the charge transport of glutamic acid terminated polyglycine peptide SAMs.By analyzing the relationship of the charge transport with the molecular frontier orbital relative to the Fermi energy level of the electrode,the molecule-electrodes coupling(Γ),and the trends in skewness and kurtosis with voltage and the dielectric constant(εr),we showed that the attenuation was from the decreasedΓand the reduced polarizability.We present an efficient strategy to modulate the charge transport of oligopeptide-SAM junctions by intermolecular interactions,which will advance our understanding of charge transport in biological systems and facilitate developing future electronics.展开更多
Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dio...Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative,C8-BTBT is one of the best small-molecule hole transport materials.Here,we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations.We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K.Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT,and polymorphism was identified in the shear process.The band width enhancement is up to 8%under 2%of compressive strain along the x direction,and 14%under 4%of tensile strain along the y direction.The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs,where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively.These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates,for example,by bending the substrates.展开更多
基金supported by financial support from the National Natural Science Foundation of China(21974102 and 21705019)the National Key R&D Program of China(2018YFA0703700).
文摘Comprehensive Summary,The charge transport through peptides can imitate the corresponding processes in more complicated proteins,enabling us to develop high-performance bioelectronic devices and to understand the mechanisms of biomolecular recognition and information transfer.While charge transport modulation through individual peptides has been achieved via various covalent strategies,the intermolecular modulation is still very challenging,which may capture the charge transport between proteins.To tackle this challenge,we used well-defined self-assembled monolayers(SAMs)of oligopeptides as a model to imitate the interface of proteins and explored an interfacial amino acid strategy for charge transport modulation.We showed that non-covalently interfaced charged amino acids(e.g.,arginine)effectively attenuated the charge transport of glutamic acid terminated polyglycine peptide SAMs.By analyzing the relationship of the charge transport with the molecular frontier orbital relative to the Fermi energy level of the electrode,the molecule-electrodes coupling(Γ),and the trends in skewness and kurtosis with voltage and the dielectric constant(εr),we showed that the attenuation was from the decreasedΓand the reduced polarizability.We present an efficient strategy to modulate the charge transport of oligopeptide-SAM junctions by intermolecular interactions,which will advance our understanding of charge transport in biological systems and facilitate developing future electronics.
基金supported by the National Natural Science Foundation of China(21273124,21290190,21290191 and 91333202)the Innovative Research Groups of the National Science Foundation of China(21421064)the National Basic Research Program of China(2013CB933503 and 2015CB655002)
文摘Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative,C8-BTBT is one of the best small-molecule hole transport materials.Here,we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations.We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K.Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT,and polymorphism was identified in the shear process.The band width enhancement is up to 8%under 2%of compressive strain along the x direction,and 14%under 4%of tensile strain along the y direction.The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs,where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively.These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates,for example,by bending the substrates.