期刊文献+
共找到5,046篇文章
< 1 2 250 >
每页显示 20 50 100
A Novel Multiple DBC-staked units Package to Parallel More Chips for SiC Power Module 被引量:1
1
作者 Xiaoshuang Hui Puqi Ning +4 位作者 Tao Fan Yuhui Kang Kai Wang Yunhui Mei Guangyin Lei 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期72-79,共8页
Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple stake... Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint. 展开更多
关键词 Silicon carbide Electric vehicle Power modules PACKAGE
下载PDF
Engineering vascularized organotypic tissues via module assembly
2
作者 Zhenzhen Zhou Changru Liu +2 位作者 Yuting Guo Yuan Pang Wei Sun 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期155-175,共21页
Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular mat... Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular maturation make vascularized organotypic tissue construction difficult,greatly limiting its use in tissue engineering and regenerative medicine. To address these limitations, recent studies have adopted pre-vascularized microtissue assembly for the rapid generation of functional tissue analogs with dense vascular networks and high cell density. In this article, we summarize the development of module assembly-based vascularized organotypic tissue construction and its application in tissue repair and regeneration, organ-scale tissue biomanufacturing, as well as advanced tissue modeling. 展开更多
关键词 vascularized organotypic tissue module assembly regenerative medicine tissue engineering
下载PDF
Analysis of thermal management and anti-mechanical abuse of multi-functional battery modules based on magneto-sensitive shear thickening fluid
3
作者 Yang XIONG Bo LU +1 位作者 Yicheng SONG Junqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期529-542,共14页
Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cann... Electric vehicles(EVs)have garnered significant attention as a vital driver of economic growth and environmental sustainability.Nevertheless,ensuring the safety of high-energy batteries is now a top priority that cannot be overlooked during large-scale applications.This paper proposes an innovative active protection and cooling integrated battery module using smart materials,magneto-sensitive shear thickening fluid(MSTF),which is specifically designed to address safety threats posed by lithium-ion batteries(LIBs)exposed to harsh mechanical and environmental conditions.The theoretical framework introduces a novel approach for harnessing the smoothed-particle hydrodynamics(SPH)methodology that incorporates the intricate interplay of non-Newtonian fluid behavior,capturing the fluid-structure coupling inherent to the MSTF.This approach is further advanced by adopting an enhanced Herschel-Bulkley(H-B)model to encapsulate the intricate rheology of the MSTF under the influence of the magnetorheological effect(MRE)and shear thickening(ST)behavior.Numerical simulation results show that in the case of cooling,the MSTF is an effective cooling medium for rapidly reducing the temperature.In terms of mechanical abuse,the MSTF solidifies through actively applying the magnetic field during mechanical compression and impact within the battery module,resulting in 66%and 61.7%reductions in the maximum stress within the battery jellyroll,and 31.1%and 23%reductions in the reaction force,respectively.This mechanism effectively lowers the risk of short-circuit failure.The groundbreaking concepts unveiled in this paper for active protection battery modules are anticipated to be a valuable technological breakthrough in the areas of EV safety and lightweight/integrated design. 展开更多
关键词 magneto-sensitive shear thickening fluid(MSTF) battery module impact protection temperature control integrated design
下载PDF
A review on the cooling of energy conversion and storage systems using thermoelectric modules
4
作者 Amirreza IJADI Mehran Rajabi ZARGARABADI +1 位作者 Saman RASHIDI Amir Mohammad JADIDI 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1998-2026,共29页
Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversio... Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell. 展开更多
关键词 COOLING PHOTOVOLTAIC lithium-ion batteries fuel cell electronic equipment thermoelectric modules
下载PDF
Review of Thermal Design of SiC Power Module for Motor Drive in Electrical Vehicle Application
5
作者 Puqi Ning Xiaoshuang Hui +3 位作者 Dongrun Li Yuhui Kang Jiajun Yang Chaohui Liu 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期332-346,共15页
In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby... In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby limiting their performance.This paper aims to review the underlying mechanisms of how irregularly arranged Pinfins influence the thermal characteristics of power modules and introduce collaborative thermal design with DC bus capacitor and motor.Literature considers chip size,placement,coolant flow direction with the goal of reducing thermal resistance of power modules,minimizing chip junction temperature differentials,and optimizing Pinfin layouts.In the first step,algorithms should efficiently generating numerous unique irregular Pinfin layouts to enhance optimization quality.The second step is to efficiently evaluate Pinfin layouts.Simulation accuracy and speed should be ensured to improve computational efficiency.Finally,to improve overall heat dissipation effectiveness,papers establish models for capacitors,motors,to aid collaborative Pinfin optimization.These research outcomes will provide essential support for future developments in high power density motor drive for vehicles. 展开更多
关键词 Thermal design Power module Pinfin Motor drive
下载PDF
A High Resolution Convolutional Neural Network with Squeeze and Excitation Module for Automatic Modulation Classification
6
作者 Duan Ruifeng Zhao Yuanlin +3 位作者 Zhang Haiyan Li Xinze Cheng Peng Li Yonghui 《China Communications》 SCIE CSCD 2024年第10期132-147,共16页
Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo... Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods. 展开更多
关键词 automatic modulation classification deep learning feature squeeze-and-excitation HIGH-RESOLUTION MULTI-SCALE
下载PDF
A Hybrid Integrated and Low-Cost Multi-Chip Broadband Doherty Power Amplifier Module for 5G Massive MIMO Application
7
作者 Fei Huang Guansheng Lv +2 位作者 Huibo Wu Wenhua Chen Zhenghe Feng 《Engineering》 SCIE EI CAS CSCD 2024年第7期223-232,共10页
In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabric... In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity. 展开更多
关键词 5G Doherty power amplifier Multi-input multi-output Multi-chip modules Hybrid integrated
下载PDF
Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation
8
作者 Juan Zhang Xiaofei Ji +13 位作者 Xiaoting Wang Liujiang Zhang Leyu Bi Zhenhuang Su Xingyu Gao Wenjun Zhang Lei Shi Guoqing Guan Abuliti Abudula Xiaogang Hao Liyou Yang Qiang Fu Alex K.‑Y.Jen Linfeng Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期571-582,共12页
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai... A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication. 展开更多
关键词 Inverted perovskite solar cells Perovskite solar modules Two-step film formation CRYSTALLIZATION Defect passivation
下载PDF
Research on the LA-UMamba Model for Asymmetric Modules with Added Auxiliary Information
9
作者 YAN Jing SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期56-66,共11页
Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling cap... Deep learning techniques are revolutionizing the developmentof medical image segmentation.With the advancement of Transformer models,especially ViT and Swin-Transformer,which enhances the remote-dependent modeling capability of the model through the self-attention mechanism,better segmentation performance can be achieve.Moreover,the high computational cost of Transformer has motivated researchers to explore more efficient models,such as the Mamba model based on state-space modeling(SSM),and for the field of medical segmentation,reducing the number of model parameters is also necessary.In this study,a novel asymmetric model called LA-UMamba was proposed,which integrates visual Mamba module to efficiently capture complex visual features and remote dependencies.The classical design of U-Net was adopted in the upsampling phase to help reduce the number of references and recover more details.To mitigate the information loss problem,an auxiliary U-Net downsampling layer was designed to focus on sizing without extracting features,thus enhancing the protection of input information while maintaining the efficiency of the model.The experiments were conducted on the ACDC MRI cardiac segmentation dataset,and the results showed that the proposed LA-UMamba achieves proved performance compared to the baseline model in several evaluation metrics,such as IoU,Accuracy,Precision,HD and ASD,which improved that the model is successful in optimizing the detail processing and reducing the complexity of the model,providing a new perspective for further optimization of medical image segmentation techniques. 展开更多
关键词 Medical image segmentation U-Net Mamba module Deep Learning
下载PDF
Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules
10
作者 Yongcan Zhu JiawenWang +3 位作者 Ye Zhang Long Zhao Botao Jiang Xinbo Huang 《Energy Engineering》 EI 2024年第4期895-911,共17页
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ... The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply. 展开更多
关键词 Photovoltaic(PV)module residual snow and ice snow detection feature extraction image processing
下载PDF
Unsupervised multi-modal image translation based on the squeeze-and-excitation mechanism and feature attention module
11
作者 胡振涛 HU Chonghao +1 位作者 YANG Haoran SHUAI Weiwei 《High Technology Letters》 EI CAS 2024年第1期23-30,共8页
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera... The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable. 展开更多
关键词 multi-modal image translation generative adversarial network(GAN) squeezeand-excitation(SE)mechanism feature attention(FA)module
下载PDF
Heat dissipation enhancement method for finned heat sink for AGV motor driver's IGBT module
12
作者 刘璇 ZHANG Mingchao +2 位作者 LIU Chengwen ZHOU Chuanan LV Xiaoling 《High Technology Letters》 EI CAS 2024年第2期170-178,共9页
With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated gu... With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated guided vehicle(AGV)motor driver in port environment,and improves heat dissipation by analyzing and optimizing the core component of finned heat sink.Firstly,the temperature distribution of the initial scheme is studied by using Fluent software,and the heat transfer characteristics of the finned heat sink are obtained through numerical analysis.Secondly,an orthogonal test is designed and combined with the response surface methodology to optimize the structural parameters of the finned heat sink,resulting in a 14.57%increase in the heat dissipation effect.Finally,the effectiveness of heat dissipation enhancement is verified.This work provides valuable insights into improving the heat dissipation of IGBT modules and heat sinks,and provides guidance for their future applications. 展开更多
关键词 finned heat sink insulated gate bipolar transistor(IGBT)module heat dissipation orthogonal test response surface methodology
下载PDF
Analysis of the Effect of Temperature and Relative Humidity on the Reliability of a Photovoltaic Module
13
作者 Abdoulaye Kabré Dominique Bonkoungou Zacharie Koalaga 《Advances in Materials Physics and Chemistry》 CAS 2024年第8期165-177,共13页
Photovoltaic energy occupies a significant place in the renewable energy market, with photovoltaic (PV) modules playing a vital role in converting solar energy into electricity. However, their effectiveness is likely ... Photovoltaic energy occupies a significant place in the renewable energy market, with photovoltaic (PV) modules playing a vital role in converting solar energy into electricity. However, their effectiveness is likely to be affected by variations in environmental conditions, including temperature and relative humidity. The study examines the impact of these major climatic factors on the reliability of PV modules, aiming to provide crucial information for optimizing and managing these systems under varying conditions. Inspired by Weibull’s law to model the lifespan of components, we proposed a mathematical model integrating a correction factor linked to temperature and relative humidity. Using this approach, simulations in Matlab Simulink reveal that increasing temperature and relative humidity have an adverse impact on the reliability and lifespan of PV modules, with a more pronounced impact on temperature. The results highlight the importance of considering these environmental parameters in the management and optimization of photovoltaic systems to ensure their long-term efficiency. 展开更多
关键词 Solar Energy PV module LIFESPAN RELIABILITY EFFICIENCY
下载PDF
Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles
14
作者 Masafumi Yamaguchi Yasuyuki Ota +18 位作者 Taizo Masuda Christian Thiel Anastasios Tsakalidis Arnulf Jaeger-Waldau Kenji Araki Kensuke Nishioka Tatsuya Takamoto Takashi Nakado Kazumi Yamada Tsutomu Tanimoto Yosuke Tomita Yusuke Zushi Kenichi Okumura Takashi Mabuchi Akinori Satou Kyotaro Nakamura Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2024年第4期131-150,共20页
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ... The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV. 展开更多
关键词 Vehicle Integrated Photovoltaics (VIPV) VIPV-Powered Electric Vehicles Driving Distance PV modules Solar Irradiation Temperature Rise Radiative Cooling
下载PDF
Solvent engineering towards scalable fabrication of high-quality perovskite films for efficient solar modules 被引量:4
15
作者 Zhaoyi Jiang Binkai Wang +10 位作者 Wenjun Zhang Zhichun Yang Mengjie Li Fumeng Ren Tahir Imran Zhenxing Sun Shasha Zhang Yiqiang Zhang Zhiguo Zhao Zonghao Liu Wei Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期689-710,I0015,共23页
Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,th... Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed. 展开更多
关键词 Solvent engineering Scalable fabrication Perovskite film Solar cell module
下载PDF
Highly Efficient and Stable FAPbI_(3) Perovskite Solar Cells and Modules Based on Exposure of the(011)Facet 被引量:2
16
作者 Kai Zhang Bin Ding +12 位作者 Chenyue Wang Pengju Shi Xianfu Zhang Cheng Liu Yi Yang Xingyu Gao Rui Wang Li Tao Keith G.Brooks Songyuan Dai Paul J.Dyson Mohammad Khaja Nazeeruddin Yong Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期164-174,共11页
Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices.Compared to the(001)facet,the(011)facet yields better photoelectric properties,including higher conduc... Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices.Compared to the(001)facet,the(011)facet yields better photoelectric properties,including higher conductivity and enhanced charge carrier mobility.Thus,achieving(011)facet-exposed films is a promising way to improve device performance.However,the growth of(011)facets is energetically unfavorable in FAPbI_(3) perovskites due to the influence of methylammonium chloride additive.Here,1-butyl-4-methylpyridinium chloride([4MBP]Cl)was used to expose(011)facets.The[4MBP]^(+)cation selectively decreases the surface energy of the(011)facet enabling the growth of the(011)plane.The[4MBP]^(+)cation causes the perovskite nuclei to rotate by 45°such that(011)crystal facets stack along the out-of-plane direction.The(011)facet has excellent charge transport properties and can achieve better-matched energy level alignment.In addition,[4MBP]Cl increases the activation energy barrier for ion migration,suppressing decomposition of the perovskite.As a result,a small-size device(0.06 cm2)and a module(29.0 cm2)based on exposure of the(011)facet achieved power conversion efficiencies of 25.24%and 21.12%,respectively. 展开更多
关键词 Renewable energy Perovskite solar cell Perovskite solar module Facet engineering
下载PDF
Sandwich structured ultra-strong-heat-shielding aerogel/copper composite insulation board for safe lithium-ion batteries modules 被引量:2
17
作者 Heng Yu Xiaowei Mu +7 位作者 Yulu Zhu Can Liao Longfei Han Jingwen Wang Wei Cai Yongchun Kan Lei Song Yuan Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期438-447,I0011,共11页
The fire hazard of lithium-ion batteries(LIBs)modules is extremely serious due to their high capacity.Moreover,once a battery catches fire,it can easily result in a fire of the entire LIBs modules.In this work,a sandw... The fire hazard of lithium-ion batteries(LIBs)modules is extremely serious due to their high capacity.Moreover,once a battery catches fire,it can easily result in a fire of the entire LIBs modules.In this work,a sandwich structure composite thermal insulation(STI)board(copper//silica dioxide aerogel//copper)with the advantages of low thermal conductivity(0.031 W m-1K-1),low surface radiation emissivity(0.1)and good thermal convection inhibition effect has been designed.The thermal runaway(TR)occurrence time of adjacent LIBs increases from 1384 s to more than 6 h+due to the protection of STI board.No TR propagation occurs within LIBs modules with protect of a STI board when a battery catches fire.The ultra-strong-heat-shielding mechanism of STI board has been revealed.The TR propagation of LIBs modules has been insulated effectively by STI board through reducing the heat transfer of convection,conduction and radiation.The air flow rate between the heater and LIBs and radiant heat absorbed by LIBs decrease by 63.5%and 35.1%with protection of STI board,respectively.A high temperature difference inside the STI board is also formed.This work provides direction for the designing of safe thermal insulation board for LIBs modules. 展开更多
关键词 Insulation board Ultra-strong-heat-shielding Lithium-ion battery modules Thermal runaway propagation Mechanism
下载PDF
The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance in wheat seedlings 被引量:1
18
作者 CHI Qing DU Lin-ying +6 位作者 MA Wen NIU Ruo-yu WU Bao-wei GUO Li-jian MA Meng LIU Xiang-li ZHAO Hui-xian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期981-998,共18页
Previous studies have revealed the miR164 family and the miR164-targeted NAC transcription factor genes in rice(Oryza sativa)and Arabidopsis that play versatile roles in developmental processes and stress responses.In... Previous studies have revealed the miR164 family and the miR164-targeted NAC transcription factor genes in rice(Oryza sativa)and Arabidopsis that play versatile roles in developmental processes and stress responses.In wheat(Triticum aestivum L.),we found nine genetic loci of tae-miR164(tae-MIR164 a to i)producing two mature sequences that downregulate the expression of three newly identified target genes of TaNACs(TaNAC1,TaNAC11,and TaNAC14)by the cleavage of the respective mRNAs.Overexpression of tae-miR164 or one of its target genes(TaNAC14)demonstrated that the miR164-TaNAC14 module greatly affects root growth and development and stress(drought and salinity)tolerance in wheat seedlings,and TaNAC14 promotes root growth and development in wheat seedlings and enhances drought tolerance,while tae-miR164 inhibits root development and reduces drought and salinity tolerance by downregulating the expression of TaNAC14.These findings identify the miR164-TaNAC14 module as well as other taemiR164-regulated genes which can serve as new genetic resources for stress-resistance wheat breeding. 展开更多
关键词 Triticum aestivum L. tae-miR164 miR164-targeted TaNACs miR164-TaNAC14 module growth and development abiotic-stress tolerance
下载PDF
Traffic Sign Recognition for Autonomous Vehicle Using Optimized YOLOv7 and Convolutional Block Attention Module 被引量:1
19
作者 P.Kuppusamy M.Sanjay +1 位作者 P.V.Deepashree C.Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第10期445-466,共22页
The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine ... The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition. 展开更多
关键词 Object detection traffic sign detection YOLOv7 convolutional block attention module road sign detection ADAM
下载PDF
Splash Zone Dynamic Analysis of A Suspended Semi-Submerged Subsea Module for Irregular Waves
20
作者 ZAN Ying-fei GUO Rui-nan +3 位作者 LI Feng LIU Pei-lin HUANG Fu-xiang TIAN Li-feng 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期258-271,共14页
Experimental and numerical studies on the dynamic cable tension of a subsea module during semi-submerged hoisting tests are performed. The experiments are carried out in irregular waves and the time-domain numerical s... Experimental and numerical studies on the dynamic cable tension of a subsea module during semi-submerged hoisting tests are performed. The experiments are carried out in irregular waves and the time-domain numerical simulations are conducted using the software “Simulation of Marine Operations”. The numerical formulation is validated through a comparison with experimental test measurements. The effects of the significant wave height, spectral peak period,and wave direction on the dynamic effect in the main sling and sub-slings are then investigated numerically. The relationship between the wave parameters and the dynamic effect is identified in the time and frequency domains,enabling the allowable sea states to be partially specified. The extreme dynamic effects in all slings under different wave conditions are estimated by using cumulative distribution functions of the Gumbel distribution. The results show that it is reasonable to model a complex subsea module via slender elements and depth-dependent coefficients in simulations of offshore operations. Lowering operations are safer if the wave height is 1 m and the wave period is larger than 8 s because the wave steepness is sufficient for the maximum possible dynamic effect to remain below 0.9. The dynamic tension may decrease when the wave direction is approximately 150°. It is dangerous for subsea modules to encounter lateral waves while entering the water because large overloads and underloads in the extreme dynamic tension may cause snap loads to occur and the slings to become slack. 展开更多
关键词 splash zone subsea module cavity shell time-domain simulation dynamic effect
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部