The sodium silicate bonded sand hardened by microwave heating has many advantages,such as low sodium silicate adding quantity,fast hardening speed,high room temperature strength,good collapsibility and certain surface...The sodium silicate bonded sand hardened by microwave heating has many advantages,such as low sodium silicate adding quantity,fast hardening speed,high room temperature strength,good collapsibility and certain surface stability.However,it has big moisture absorbability in the air,which would lead to the compression strength and the surface stability of the sand molds being sharply reduced.In this study,the moisture absorbability of the sodium silicate bonded sand hardened by microwave heating in different humidity conditions and the effect factors were investigated.Meanwhile,the reasons for the big moisture absorbability of the sand were analyzed.Some measures to overcome the problems of high moisture absorbability,bad surface stability and sharply reducing strength in the air were discussed.The results of this study establish the foundation of green and clean foundry technology based on the microwave heating hardening sodium silicate sand process.展开更多
Traditional lubricant impregnated surfaces usually required fluorinated lubricants to achieve slippery oil repellency, but the lubricants infused were expensive and toxic and also suffered from limited stability becau...Traditional lubricant impregnated surfaces usually required fluorinated lubricants to achieve slippery oil repellency, but the lubricants infused were expensive and toxic and also suffered from limited stability because of their migrating, evaporating, and leaking during use. Herein, to address this issue, we fabricated a durably fluorine-free slippery oil-repellent hydrogel coating using water as the lubricant. Due to its enhanced water-binding affinity, water could wet the hydrogel completely and form a hydrated-water layer on the surface. The hydrated water layer could act as a lubricant to repel foreign oils, which allowed the hydrogel to display slippery oil-repellency in air, exhibit superoleophobicity underwater, and resist oil fouling upon oil immersion.The hydrogel kept its oil-repellent properties after mechanical tests as well as thermal and freezing treatments,demonstrating its durability. Thanks to its moisture absorption, the water lubricant layer could self-regenerate upon the lubricated water layer depletion through exposure to a humid environment. Exploiting it is water-attracting and oil repellency, the hydrogel coating was demonstrated as a versatile platform for oil/water separation, polymer/water separation, drag-reduction, and antifogging.展开更多
基金supported by the National Nature Science Foundation of China under grant No.50575085
文摘The sodium silicate bonded sand hardened by microwave heating has many advantages,such as low sodium silicate adding quantity,fast hardening speed,high room temperature strength,good collapsibility and certain surface stability.However,it has big moisture absorbability in the air,which would lead to the compression strength and the surface stability of the sand molds being sharply reduced.In this study,the moisture absorbability of the sodium silicate bonded sand hardened by microwave heating in different humidity conditions and the effect factors were investigated.Meanwhile,the reasons for the big moisture absorbability of the sand were analyzed.Some measures to overcome the problems of high moisture absorbability,bad surface stability and sharply reducing strength in the air were discussed.The results of this study establish the foundation of green and clean foundry technology based on the microwave heating hardening sodium silicate sand process.
基金supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2019MEM044)the National Natural Science Foundation of China (Grant No. 11704321)+1 种基金Yantai Science and Technology Plan Projects (Grant No. 2019XDHZ087)Graduate Innovation Foundation of Yantai University (Grant No. YDZD2129)。
文摘Traditional lubricant impregnated surfaces usually required fluorinated lubricants to achieve slippery oil repellency, but the lubricants infused were expensive and toxic and also suffered from limited stability because of their migrating, evaporating, and leaking during use. Herein, to address this issue, we fabricated a durably fluorine-free slippery oil-repellent hydrogel coating using water as the lubricant. Due to its enhanced water-binding affinity, water could wet the hydrogel completely and form a hydrated-water layer on the surface. The hydrated water layer could act as a lubricant to repel foreign oils, which allowed the hydrogel to display slippery oil-repellency in air, exhibit superoleophobicity underwater, and resist oil fouling upon oil immersion.The hydrogel kept its oil-repellent properties after mechanical tests as well as thermal and freezing treatments,demonstrating its durability. Thanks to its moisture absorption, the water lubricant layer could self-regenerate upon the lubricated water layer depletion through exposure to a humid environment. Exploiting it is water-attracting and oil repellency, the hydrogel coating was demonstrated as a versatile platform for oil/water separation, polymer/water separation, drag-reduction, and antifogging.