Eremosparton songoricum (Litv.) Vass is a dwarf clonal shrubby legume developed on the windward slopes of mobile or semi-fixed sand dunes of Central Asia. It is assumed that E. songoricum must possess a high degree ...Eremosparton songoricum (Litv.) Vass is a dwarf clonal shrubby legume developed on the windward slopes of mobile or semi-fixed sand dunes of Central Asia. It is assumed that E. songoricum must possess a high degree of phenotypic plasticity for such a heterogeneous habitat. The variations of E. songoricum plants growing in two typical microhabitats (the upper slope and the lower slope of semi-mobile dune) were investigated. The morphological characteristics and the biomass allocation patterns were measured and compared at the clonal fragment level. Compared with the clonal fragment on the lower slope of dune, the clonal fragment on the upper slope of the dune (a) declined in total biomass and ramet height, (b) increased the length of rhizomes and the number of roots, (c) increased the degree of asym- metry, and (d) heightened allocation to the belowground biomass. Our results confirmed the hypothesis of high phenotypic adjustment capacity of E. songoricum to habitat moisture availability. Phenotypic plasticity of E. songoricum contributed to reduce the damage risk, led to an environmentally induced specialization in function of resources exploitation, resulted in its persistence in heterogeneous environments and was adaptive in sand dune environment.展开更多
The objectives of the current study were to estimate evapotranspiration(ET) over the grassland and assess seasonal variation of moisture availability at the wind-water erosion crisscross region in the northern Loess...The objectives of the current study were to estimate evapotranspiration(ET) over the grassland and assess seasonal variation of moisture availability at the wind-water erosion crisscross region in the northern Loess Plateau of China. The Liudaogou Catchment which has the representative climatic and hydrological characteristics of the wind-water erosion crisscross region was chosen as the study location. The reference crop evapotranspiration(ET 0) was estimated by Penmen method, which was recommended by FAO56 and the evapotranspiration over the grassland(ET) was estimated by Penmen-Monteith equation using the observed meteorological data with time unit of 1 h. The soil moisture availability factor was defined by m a =ET/ET 0. The calculated results for 2006 indicated that the total ET 0 was slightly more than the total yearly precipitation and ET accounted for 37 % of that, ET increased distinctly after the intensive rainfall event in the rainy season. Most of the m a was less than 0.4 and its annual mean was 0.34. It was expected that the results provided a basis for studies on dynamic functional analysis of soil moisture, relationship between soil water and crop growth at the wind-water erosion crisscross region in the northern Loess Plateau.展开更多
The Bowen ratio (B) is impacted by 5 environmental elements: soil moisture availabillity, m, the ratio of resistances between atmosphere and soil pores, atmospheric relative humidity, h,atmospheric stability, △T, an...The Bowen ratio (B) is impacted by 5 environmental elements: soil moisture availabillity, m, the ratio of resistances between atmosphere and soil pores, atmospheric relative humidity, h,atmospheric stability, △T, and enviD ronment temperature. These impacts have been investigated over diverse surfaces, including bare soil, free water surface, and vegetation covered land, using an analytical approach. It was concluded that: (a) B is not a continuous function. The singularity exists at the condition αhcb = h, occurring preferably in the following conditions f weak turbulence, stable stratified stability, dry soil, and humid air, where hcb, defined by Eq.(11) is a critical variable. The existence of a singularity makes the dependence of B on the five variables very complicated. The value of B approaches being inversely proportional to m under the conditions m≥mfc (the soil capacity) and / 0.The proportional coefficient changes with season and latitude with relatively high values in winter and over the poles; (b) B is nearly independent of during the day. The impact of m on B is much larger as compared to that of on B; (c) when h increases, the absolute value of B also increases; (d) over bare soil,when the absolute surface net radiation increases, the absolute value of B will increase. The impact of RN on B is larger at night than during the day, and (e) over plant canopy, the singularity and the dependdes of B on m,rα, and h are modified as compared to that over bare soil.Also (i) during the daytime unstable condition, m exerts an even stronger impact on B; at night, however,B changes are weak in response to the change in m; (ii) the value of B is much more sensitive in response to the changes of turbulent intensity; (iii) the B response to the variation of h over a vegetation covered area is weaker; and (iv) the singularity exists at the condition hcp=h instead of αhcb=h as over bare soil, where hcp is defined by Eq.(49). The formulas derived over bare soil also hold the same when applied to free water bodies as long as they are visualized as a special soil in which the volumetric fraction of soil pore is equal to one and are fully filled with water.Finally, the above discussions are used to briefly study the impact on the thermally induced mesoscale circulations.展开更多
The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a re...The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.展开更多
On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were pu...On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.展开更多
Xinjiang Uygur Autonomous Region of China, with its unique topography and geographical location receives very less precipitation in summer as compared with other parts of China. The region is a land locked where moist...Xinjiang Uygur Autonomous Region of China, with its unique topography and geographical location receives very less precipitation in summer as compared with other parts of China. The region is a land locked where moisture is supplied only by westerly winds from Atlantic Ocean as the moisture coming from Indian Ocean is mostly blocked by the Himalayas Range and the Tibetan plateau. In such a scenario, Xinjiang faces severe drought conditions offering significant challenges to water management. In this paper, we analyzed the drought periods in Xinjiang and discussed the various factors that might have influenced precipitation over the past forty-four years. For this purpose, we defined three periods of consecutive four years for high and low precipitation intensities. The average observed precipitation was 1.05 mm/day and 0.7 mm/day in summer (June-July-August) for the Tianshan Mountain region and Junggar Basin of Xinjiang, respectively. The drought conditions indicated that high sea level pressure, wind divergence and low convection were the prominent features that caused the droughts, which often do not allow the condensation process to coagulate the tiny water droplets into relatively large raindrops reducing the amount of precipitation in the region. The period of 1983-1986 is the lowest precipitation interval indicating the severe drought in the western Xinjiang (i.e western Tianshan Mountain region), for which, less moisture availability, strong divergence and less convection could be the most influencing factors.展开更多
Soil survey investigations were carried out in Ferk6 1 as well as Ferk6 2 sugar mills of northern Ivory Coast to determine soil texture and water storage capacity for sprinkler irrigation and tillage management. A 5-y...Soil survey investigations were carried out in Ferk6 1 as well as Ferk6 2 sugar mills of northern Ivory Coast to determine soil texture and water storage capacity for sprinkler irrigation and tillage management. A 5-year term observation experiment on reduced tillage compared with conventional tillage was also conducted in Ferk6 1 over an irrigated cane crop of 28 ha for yield optimization purpose. Soil sampling was achieved after harvest or prior to re-plantation at five different spots along two transects over 30 cm depth in every farmland which covers about 30-40 ha with 432 m long cane rows as to get an average soil sample of 1.5-2 kg. Soil physical properties like texture and water retention curves were determined locally in the sugar company's soil laboratory. It came out that the majority of soils investigated was coarse-textured for about 64% in Ferk6 1 and 85% in Ferk6 2, with a lower to medium water storage capacity (70-89 mm) over 60 cm depth which corresponds to a readily available moisture less than 60 mm. Except for the sugarcane plant crop, no significant difference in cane yields resulting from tillage practices was observed over four consecutive cropping seasons. The yield decline from plant cane to first ratoon was very high under conventional tillage (-16 t/ha) compared with the reduced tillage (+3 t/ha). Even higher cane yield was obtained on the second ratoon (89 t/ha) compared with the conventional tillage (83 t/ha).展开更多
基金supported by the Key Knowledge Innovation Project of Chinese Academy of Sciences (KSCX2-YW-Z- 1020)the National Basic Research Program of China (2009CB825104)the National Natural Science Foundation of China (30970547)
文摘Eremosparton songoricum (Litv.) Vass is a dwarf clonal shrubby legume developed on the windward slopes of mobile or semi-fixed sand dunes of Central Asia. It is assumed that E. songoricum must possess a high degree of phenotypic plasticity for such a heterogeneous habitat. The variations of E. songoricum plants growing in two typical microhabitats (the upper slope and the lower slope of semi-mobile dune) were investigated. The morphological characteristics and the biomass allocation patterns were measured and compared at the clonal fragment level. Compared with the clonal fragment on the lower slope of dune, the clonal fragment on the upper slope of the dune (a) declined in total biomass and ramet height, (b) increased the length of rhizomes and the number of roots, (c) increased the degree of asym- metry, and (d) heightened allocation to the belowground biomass. Our results confirmed the hypothesis of high phenotypic adjustment capacity of E. songoricum to habitat moisture availability. Phenotypic plasticity of E. songoricum contributed to reduce the damage risk, led to an environmentally induced specialization in function of resources exploitation, resulted in its persistence in heterogeneous environments and was adaptive in sand dune environment.
基金Supported by the National Natural Science Foundation of China(NSFC)(41271046)Postdoctoral Science Foundation of China(Oversea scholar,87328)+1 种基金Heilongjiang Provincial Department of Education Scientific Research Foundation for overseas scholars,China(1251H017)Scientific Research Foundation of Northeast Agricultural University of China(115-180152)
文摘The objectives of the current study were to estimate evapotranspiration(ET) over the grassland and assess seasonal variation of moisture availability at the wind-water erosion crisscross region in the northern Loess Plateau of China. The Liudaogou Catchment which has the representative climatic and hydrological characteristics of the wind-water erosion crisscross region was chosen as the study location. The reference crop evapotranspiration(ET 0) was estimated by Penmen method, which was recommended by FAO56 and the evapotranspiration over the grassland(ET) was estimated by Penmen-Monteith equation using the observed meteorological data with time unit of 1 h. The soil moisture availability factor was defined by m a =ET/ET 0. The calculated results for 2006 indicated that the total ET 0 was slightly more than the total yearly precipitation and ET accounted for 37 % of that, ET increased distinctly after the intensive rainfall event in the rainy season. Most of the m a was less than 0.4 and its annual mean was 0.34. It was expected that the results provided a basis for studies on dynamic functional analysis of soil moisture, relationship between soil water and crop growth at the wind-water erosion crisscross region in the northern Loess Plateau.
文摘The Bowen ratio (B) is impacted by 5 environmental elements: soil moisture availabillity, m, the ratio of resistances between atmosphere and soil pores, atmospheric relative humidity, h,atmospheric stability, △T, and enviD ronment temperature. These impacts have been investigated over diverse surfaces, including bare soil, free water surface, and vegetation covered land, using an analytical approach. It was concluded that: (a) B is not a continuous function. The singularity exists at the condition αhcb = h, occurring preferably in the following conditions f weak turbulence, stable stratified stability, dry soil, and humid air, where hcb, defined by Eq.(11) is a critical variable. The existence of a singularity makes the dependence of B on the five variables very complicated. The value of B approaches being inversely proportional to m under the conditions m≥mfc (the soil capacity) and / 0.The proportional coefficient changes with season and latitude with relatively high values in winter and over the poles; (b) B is nearly independent of during the day. The impact of m on B is much larger as compared to that of on B; (c) when h increases, the absolute value of B also increases; (d) over bare soil,when the absolute surface net radiation increases, the absolute value of B will increase. The impact of RN on B is larger at night than during the day, and (e) over plant canopy, the singularity and the dependdes of B on m,rα, and h are modified as compared to that over bare soil.Also (i) during the daytime unstable condition, m exerts an even stronger impact on B; at night, however,B changes are weak in response to the change in m; (ii) the value of B is much more sensitive in response to the changes of turbulent intensity; (iii) the B response to the variation of h over a vegetation covered area is weaker; and (iv) the singularity exists at the condition hcp=h instead of αhcb=h as over bare soil, where hcp is defined by Eq.(49). The formulas derived over bare soil also hold the same when applied to free water bodies as long as they are visualized as a special soil in which the volumetric fraction of soil pore is equal to one and are fully filled with water.Finally, the above discussions are used to briefly study the impact on the thermally induced mesoscale circulations.
文摘The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.
文摘On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.
文摘Xinjiang Uygur Autonomous Region of China, with its unique topography and geographical location receives very less precipitation in summer as compared with other parts of China. The region is a land locked where moisture is supplied only by westerly winds from Atlantic Ocean as the moisture coming from Indian Ocean is mostly blocked by the Himalayas Range and the Tibetan plateau. In such a scenario, Xinjiang faces severe drought conditions offering significant challenges to water management. In this paper, we analyzed the drought periods in Xinjiang and discussed the various factors that might have influenced precipitation over the past forty-four years. For this purpose, we defined three periods of consecutive four years for high and low precipitation intensities. The average observed precipitation was 1.05 mm/day and 0.7 mm/day in summer (June-July-August) for the Tianshan Mountain region and Junggar Basin of Xinjiang, respectively. The drought conditions indicated that high sea level pressure, wind divergence and low convection were the prominent features that caused the droughts, which often do not allow the condensation process to coagulate the tiny water droplets into relatively large raindrops reducing the amount of precipitation in the region. The period of 1983-1986 is the lowest precipitation interval indicating the severe drought in the western Xinjiang (i.e western Tianshan Mountain region), for which, less moisture availability, strong divergence and less convection could be the most influencing factors.
文摘Soil survey investigations were carried out in Ferk6 1 as well as Ferk6 2 sugar mills of northern Ivory Coast to determine soil texture and water storage capacity for sprinkler irrigation and tillage management. A 5-year term observation experiment on reduced tillage compared with conventional tillage was also conducted in Ferk6 1 over an irrigated cane crop of 28 ha for yield optimization purpose. Soil sampling was achieved after harvest or prior to re-plantation at five different spots along two transects over 30 cm depth in every farmland which covers about 30-40 ha with 432 m long cane rows as to get an average soil sample of 1.5-2 kg. Soil physical properties like texture and water retention curves were determined locally in the sugar company's soil laboratory. It came out that the majority of soils investigated was coarse-textured for about 64% in Ferk6 1 and 85% in Ferk6 2, with a lower to medium water storage capacity (70-89 mm) over 60 cm depth which corresponds to a readily available moisture less than 60 mm. Except for the sugarcane plant crop, no significant difference in cane yields resulting from tillage practices was observed over four consecutive cropping seasons. The yield decline from plant cane to first ratoon was very high under conventional tillage (-16 t/ha) compared with the reduced tillage (+3 t/ha). Even higher cane yield was obtained on the second ratoon (89 t/ha) compared with the conventional tillage (83 t/ha).