Vacuum far-infrared radiation(VFIR)drying has recently received many attentions because of its effective and successful applications in drying some agricultural products.The VFIR drying of Radix Rehmanniae was conduct...Vacuum far-infrared radiation(VFIR)drying has recently received many attentions because of its effective and successful applications in drying some agricultural products.The VFIR drying of Radix Rehmanniae was conducted and Weibull distribution function was applied to fit the drying kinetics in this study.The results showed that the increase of radiation heater temperature and the decrease of chamber pressure could reduce drying time obviously.Compared with single diffusion equation,Weibull distribution function had higher precision to fit the drying curves of VFIR drying of Rehmanniae.The effective moisture diffusivity(Deff)increased with the increase of heater temperature and the decrease of pressure.Scanning electron telescope(SEM)analysis showed that more porous surface could be observed after VFIR drying,which is beneficial to enhance moisture diffusivity and drying rate as well.展开更多
This study investigates the microwave drying kinetics of thin layer Mabonde banana variety(MBV)at power levels between 100 and 300 W.Six mathematical drying models:Wang and Singh,Verma,Two-term,Page,Two term exponenti...This study investigates the microwave drying kinetics of thin layer Mabonde banana variety(MBV)at power levels between 100 and 300 W.Six mathematical drying models:Wang and Singh,Verma,Two-term,Page,Two term exponential,and Logarithmic models were fitted to experimental drying data obtained from the study.The statistical consistency of the models was determined using statistical parameters including coefficient of determination,mean bias error,root mean square error,and reduced Chi square.Moisture migration from banana slices was described using the Fick’s diffusion model.The effective diffusivity was calculated.The results indicated that drying took place largely in the falling rate period.The time required to reduce the moisture of banana to a certain level was dependent on the microwave output,being the longest at 100 W and shortest at 300 W.The effective moisture diffusivity increased with increasing microwave power with values at 4.89×10^(-10),1.09×10^(-9) and 1.69×10^(-9) m^(2)/s at 100,200,and 300 W,respectively.The Wang and Singh model gave the best results for the description of thin layer drying of MBV.展开更多
This study investigated the drying kinetics of pork slice in infrared drying condition.Drying temperature,slice thickness and initial moisture content were selected as influencing factors on the drying characteristics...This study investigated the drying kinetics of pork slice in infrared drying condition.Drying temperature,slice thickness and initial moisture content were selected as influencing factors on the drying characteristics and drying rate of pork slice.Drying curves obtained from the experimental data were fitted to semi theoretical and/or empirical thin layer drying models.The effects of drying temperature and slice thickness on the model constants were evaluated by the multiple regression method.All the models were compared according to three statistical indexes,i.e.,root mean square error,chi-square and modeling efficiency.The slice thickness,drying temperature and initial moisture content have significant influences on the effective diffusivity coefficient of pork.The results showed that the drying rate of pork slices increased with the increases of drying temperature and initial moisture content.The decreases of slice thickness also led to an increase of drying rate.The Henderson and Pabis model can best describe the drying curves of pork.展开更多
The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloup...The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloupe at convective hot air dryer.Drying experiments were conducted at the air temperatures of 40,50,60 and 70C and the air speeds of 0.5,1 and l.5 m/s.Drying properties were including kinetic drying,effective moisture diffusivity(Deff)and specific energy consumption(SEC).The highest value of Deff obtained 9.76×10^-9,0.13×10^-9 and 9.97×10^-10 m^2/s for potato,garlic,and cantaloupe,respectively.The lowest value of SEC for potato,garlic,and cantaloupe were calculated 1.94105,4.52105 and 2.12105 kJ/kg,respectively.Results revealed that the ANFIS model had the high ability to predict the Deff(R^2=0.9900),SEC(R^2=0.9917),moisture ratio(R^2=0.9974)and drying rate(R^2=0.9901)during drying.So ANFIS method had the high ability to evaluate all output as compared to ANNs method.展开更多
The accuracy of the knowledge of mass transfer parameters (effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient) in the case of frying food, is essential and important for designin...The accuracy of the knowledge of mass transfer parameters (effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient) in the case of frying food, is essential and important for designing, modeling and process optimization. This study is undertaken to develop an approach for determining mass transfer parameters during frying of spherical rice cracker in sunflower oil at 150, 170 and 190 ℃. These parameters were evaluated from the plots of dimensionless concentration ratios against time of frying. Effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient ranged between 1.24×10^-8 to 2.36×10^-8 m^2/s, 1.96 to 2.34 and 5.51×10^-6 to 9.70×10^-6 m/s, respectively. Effective moisture diffusivity and mass transfer coefficient were found to increase with an increasing frying temperature, whereas mass transfer Biot number decreased. An Arrhenius-type relationship was found between effective diffusivity coefficient and frying temperature.展开更多
Rice husk (biomass fuel) samples have been dried in drying oven and a series of drying curve for illustrating moisture migration of rice husk have been obtained. It is first research for rice husk drying,and it can pr...Rice husk (biomass fuel) samples have been dried in drying oven and a series of drying curve for illustrating moisture migration of rice husk have been obtained. It is first research for rice husk drying,and it can provide reference of fuel processing for different boilers which require rice husk with various water contents. In this paper,we apply Page equation to reflect the drying process and obtain drying characteristic curve,then analyze the drying law. Kinetic analysis of the results of moisture migration test has been done,after which, effective moisture diffusion coefficient,activation energy and drying kinetic equation of rice husk samples are obtained in test temperature range (80 - 130 ℃) . And these results show specific influence law of temperature for effective moisture diffusion coefficient.展开更多
The available literature revealed a gap in reporting the rough rice drying kinetics parameters under isothermal conditions, particularly for Arkansas medium- and long-grain varieties. Therefore, medium-grain (RO170112...The available literature revealed a gap in reporting the rough rice drying kinetics parameters under isothermal conditions, particularly for Arkansas medium- and long-grain varieties. Therefore, medium-grain (RO170112 and Titan) and the long-grain (Diamond and Wells) rough rice varieties were dried under isothermal conditions. The drying process occurred under 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, and 100°C in a system emulating the thermogravimetric analyzer. Drying kinetics models were studied for four well-known models: Page, Newton, Logarithmic, and Henderson & Pabis. The drying kinetics constants were determined for the four studied models. The initial moisture content of rough rice was 28.2% db. Profound moisture reduction was observed during the first three hours of drying, followed by less moisture content reduction. The results showed that at the drying temperature of 100°C and after 6 hours of the drying process, the lowest moisture content reached 13.9% (db) for Titan rough rice. The drying rate of rough rice ranged between 7.41 and 2.01%/h during the first hour of drying under the studied temperature range of 40°C to 100°C. The drying rate was higher with the higher temperature levels during the first three hours. Among all the studied models, the Page, Newton, and Logarithmic models best fit 25%, 25%, and 50% of the twenty-eight studied cases. The challenge that arose from these results led to evolving a mathematical solution by joining the three models in one equation. The combined model showed the best fit for all the studied cases, with R<sup>2</sup> ranging between 0.9999 and 0.9954 for the medium- and long-grain rice varieties. Increasing the drying temperature increased the effective moisture diffusivity values. The highest effective moisture diffusivity of 18.104 × 10<sup>-9</sup> m<sup>2</sup>/s was obtained at the drying temperature of 100°C for medium-grain rice, Titan. The activation energy values ranged between 17.77 and 24.48 kJ/mol for the four rough rice varieties.展开更多
In this study,drying characteristics of Syzygium cumini was experimentally investigated under the temperatures of 50°C,60°C and 70°C and the mathematical models were used to fit the drying of Syzygium c...In this study,drying characteristics of Syzygium cumini was experimentally investigated under the temperatures of 50°C,60°C and 70°C and the mathematical models were used to fit the drying of Syzygium cumini.Moisture transfered from Syzygium cumini was described by applying the Fick’s diffusion model and the effective moisture diffusivity was calculated.The temperature dependence of the effective moisture diffusivity for the drying of Syzygium cumini samples was described by an Arrhenius-type relationship with activation energy.Drying data were fitted to seven drying models,namely Lewis,Henderson and Pabis,Logarithmic,Twoterm,Page,Wang and Singh and modified Henderson and Pabis.The Logarithmic model was found as the best fitted model in describing the drying behavior of Syzygium cumini.展开更多
基金the National Natural Science Foundation of China(Grant No.U1404334)the College Young Teachers Development Program of Henan province(Grant No.2015GGJS-048)the Science and Technology Project of Henan Province of China(Grant No.12A210005 and 14B550005)。
文摘Vacuum far-infrared radiation(VFIR)drying has recently received many attentions because of its effective and successful applications in drying some agricultural products.The VFIR drying of Radix Rehmanniae was conducted and Weibull distribution function was applied to fit the drying kinetics in this study.The results showed that the increase of radiation heater temperature and the decrease of chamber pressure could reduce drying time obviously.Compared with single diffusion equation,Weibull distribution function had higher precision to fit the drying curves of VFIR drying of Rehmanniae.The effective moisture diffusivity(Deff)increased with the increase of heater temperature and the decrease of pressure.Scanning electron telescope(SEM)analysis showed that more porous surface could be observed after VFIR drying,which is beneficial to enhance moisture diffusivity and drying rate as well.
基金the financial support to AOO from the Research Fund Project No.SARDF/14/FST/01the Work Study Programme of the University of Venda,Thohoyandou,South Africa.
文摘This study investigates the microwave drying kinetics of thin layer Mabonde banana variety(MBV)at power levels between 100 and 300 W.Six mathematical drying models:Wang and Singh,Verma,Two-term,Page,Two term exponential,and Logarithmic models were fitted to experimental drying data obtained from the study.The statistical consistency of the models was determined using statistical parameters including coefficient of determination,mean bias error,root mean square error,and reduced Chi square.Moisture migration from banana slices was described using the Fick’s diffusion model.The effective diffusivity was calculated.The results indicated that drying took place largely in the falling rate period.The time required to reduce the moisture of banana to a certain level was dependent on the microwave output,being the longest at 100 W and shortest at 300 W.The effective moisture diffusivity increased with increasing microwave power with values at 4.89×10^(-10),1.09×10^(-9) and 1.69×10^(-9) m^(2)/s at 100,200,and 300 W,respectively.The Wang and Singh model gave the best results for the description of thin layer drying of MBV.
基金the National Natural Science Foundation of China(No.61663039)Natural Science Foundation of Ningxia Hui Autonomous Region(No.NZ1648)the Natural Science Funds of Ningxia University(ZR15010).
文摘This study investigated the drying kinetics of pork slice in infrared drying condition.Drying temperature,slice thickness and initial moisture content were selected as influencing factors on the drying characteristics and drying rate of pork slice.Drying curves obtained from the experimental data were fitted to semi theoretical and/or empirical thin layer drying models.The effects of drying temperature and slice thickness on the model constants were evaluated by the multiple regression method.All the models were compared according to three statistical indexes,i.e.,root mean square error,chi-square and modeling efficiency.The slice thickness,drying temperature and initial moisture content have significant influences on the effective diffusivity coefficient of pork.The results showed that the drying rate of pork slices increased with the increases of drying temperature and initial moisture content.The decreases of slice thickness also led to an increase of drying rate.The Henderson and Pabis model can best describe the drying curves of pork.
文摘The main purpose of this study was to develop and apply an adaptive neuro-fuzzy inference system(ANFIS)and Artificial Neural Networks(ANNs)model for predicting the drying characteristics of potato,garlic and cantaloupe at convective hot air dryer.Drying experiments were conducted at the air temperatures of 40,50,60 and 70C and the air speeds of 0.5,1 and l.5 m/s.Drying properties were including kinetic drying,effective moisture diffusivity(Deff)and specific energy consumption(SEC).The highest value of Deff obtained 9.76×10^-9,0.13×10^-9 and 9.97×10^-10 m^2/s for potato,garlic,and cantaloupe,respectively.The lowest value of SEC for potato,garlic,and cantaloupe were calculated 1.94105,4.52105 and 2.12105 kJ/kg,respectively.Results revealed that the ANFIS model had the high ability to predict the Deff(R^2=0.9900),SEC(R^2=0.9917),moisture ratio(R^2=0.9974)and drying rate(R^2=0.9901)during drying.So ANFIS method had the high ability to evaluate all output as compared to ANNs method.
文摘The accuracy of the knowledge of mass transfer parameters (effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient) in the case of frying food, is essential and important for designing, modeling and process optimization. This study is undertaken to develop an approach for determining mass transfer parameters during frying of spherical rice cracker in sunflower oil at 150, 170 and 190 ℃. These parameters were evaluated from the plots of dimensionless concentration ratios against time of frying. Effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient ranged between 1.24×10^-8 to 2.36×10^-8 m^2/s, 1.96 to 2.34 and 5.51×10^-6 to 9.70×10^-6 m/s, respectively. Effective moisture diffusivity and mass transfer coefficient were found to increase with an increasing frying temperature, whereas mass transfer Biot number decreased. An Arrhenius-type relationship was found between effective diffusivity coefficient and frying temperature.
文摘Rice husk (biomass fuel) samples have been dried in drying oven and a series of drying curve for illustrating moisture migration of rice husk have been obtained. It is first research for rice husk drying,and it can provide reference of fuel processing for different boilers which require rice husk with various water contents. In this paper,we apply Page equation to reflect the drying process and obtain drying characteristic curve,then analyze the drying law. Kinetic analysis of the results of moisture migration test has been done,after which, effective moisture diffusion coefficient,activation energy and drying kinetic equation of rice husk samples are obtained in test temperature range (80 - 130 ℃) . And these results show specific influence law of temperature for effective moisture diffusion coefficient.
文摘The available literature revealed a gap in reporting the rough rice drying kinetics parameters under isothermal conditions, particularly for Arkansas medium- and long-grain varieties. Therefore, medium-grain (RO170112 and Titan) and the long-grain (Diamond and Wells) rough rice varieties were dried under isothermal conditions. The drying process occurred under 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, and 100°C in a system emulating the thermogravimetric analyzer. Drying kinetics models were studied for four well-known models: Page, Newton, Logarithmic, and Henderson & Pabis. The drying kinetics constants were determined for the four studied models. The initial moisture content of rough rice was 28.2% db. Profound moisture reduction was observed during the first three hours of drying, followed by less moisture content reduction. The results showed that at the drying temperature of 100°C and after 6 hours of the drying process, the lowest moisture content reached 13.9% (db) for Titan rough rice. The drying rate of rough rice ranged between 7.41 and 2.01%/h during the first hour of drying under the studied temperature range of 40°C to 100°C. The drying rate was higher with the higher temperature levels during the first three hours. Among all the studied models, the Page, Newton, and Logarithmic models best fit 25%, 25%, and 50% of the twenty-eight studied cases. The challenge that arose from these results led to evolving a mathematical solution by joining the three models in one equation. The combined model showed the best fit for all the studied cases, with R<sup>2</sup> ranging between 0.9999 and 0.9954 for the medium- and long-grain rice varieties. Increasing the drying temperature increased the effective moisture diffusivity values. The highest effective moisture diffusivity of 18.104 × 10<sup>-9</sup> m<sup>2</sup>/s was obtained at the drying temperature of 100°C for medium-grain rice, Titan. The activation energy values ranged between 17.77 and 24.48 kJ/mol for the four rough rice varieties.
文摘In this study,drying characteristics of Syzygium cumini was experimentally investigated under the temperatures of 50°C,60°C and 70°C and the mathematical models were used to fit the drying of Syzygium cumini.Moisture transfered from Syzygium cumini was described by applying the Fick’s diffusion model and the effective moisture diffusivity was calculated.The temperature dependence of the effective moisture diffusivity for the drying of Syzygium cumini samples was described by an Arrhenius-type relationship with activation energy.Drying data were fitted to seven drying models,namely Lewis,Henderson and Pabis,Logarithmic,Twoterm,Page,Wang and Singh and modified Henderson and Pabis.The Logarithmic model was found as the best fitted model in describing the drying behavior of Syzygium cumini.