期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Thermal stress analysis method considering geometric effect of risers in sand mold casting process 被引量:1
1
作者 S.Y.Kwak H.Y.Hwang C.Cho 《China Foundry》 SCIE CAS 2014年第6期531-536,共6页
Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to contro... Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great inf luence on thermal phenomena. The analysis domain is dramatically expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation diff icult. However, it is diff icult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources. 展开更多
关键词 thermal stress sand mold casting RISER numerical analysis hybrid method simulation
下载PDF
Numerical simulation on inclusion transport in continuous casting mold 被引量:10
2
作者 Lifeng Zhang Brian G Thomas 《Journal of University of Science and Technology Beijing》 CSCD 2006年第4期293-300,共8页
Turbulent flow, the transpor't of inclusions and bubbles, and inclusion removal by fluid flow, transport and by bubble flotation in the strand of the continuous slab caster are investigated using computational models... Turbulent flow, the transpor't of inclusions and bubbles, and inclusion removal by fluid flow, transport and by bubble flotation in the strand of the continuous slab caster are investigated using computational models, and validated through comparison with plant measurements of inclusions. Steady 3-D flow of steel in the liquid pool in the mold and upper strand is simulated with a finitedifference computational model using the standard k-εturbulence rondel. Trajectories of inclusions and bubhles tire calculated by integrating each local velocity, considering its drag and buoyancy forces, A "random walk" model is used to incorporate the effect of turbulent fluctuations on the particle motion. The attachment probability of inclusions on a bubble surface is investigated based on fundamental fluid flow simulations, incorporating the turbulent inclusion trajectory and sliding time of each individual inclusion along the bubble surface as a function of particle and bubble size. The chunge in inclusion distribution due to removal by bubble transport in the mold is calculated based on the computed attachment probability of inclusions on each bubble and the computed path length of the bubbles. The results indicate that 6%-10% inclusions are removed by fluid flow transport. 10% by bubble flotation, and 4% by entrapment to the submerged entry nozzle (SEN) walls. Smaller bubbles and larger inclusions have larger attachment probabilities. Smaller bubbles are more efficient for inclusion removal by bubble flotation, so Inng as they are not entrapped in the solidifying shell A larger gas flow rate favors inclusion removal by bubble flotation. The optimum bubble size should be 2-4mm. 展开更多
关键词 inclusion removal fluid flow transport bubble flotation continuous casting mold attachment probability
下载PDF
MICROSTRUCTURE ANALYSIS AND MECHANICAL PROPERTIES OF Zn-Al ALLOY ROD PRODUCED BY HEATED MOLD CONTINUOUS CASTING 被引量:4
3
作者 Y.Ma Y.Hao +1 位作者 F.Y.Yan H.J.Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第3期241-248,共8页
The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results... The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results are as follows: (1) The microstruc-ture of the ZA alloy lines is the parallel directional dendritic columnar crystal. Every dendritic crystal of eutectic alloy ZA5 was composed of many layer eutectic β and η phases. The micro structure of hypereutectic ZA alloys is primary dendritic crystal and interdendritic eutectic structure. The primary phase of ZA8 and ZA12 is β, among them, but the primary phase of ZA22 and ZA27 is a. (2) Through the test to the as-cast ZA alloy lines made in continuous casting by heated mold, it is found that the tensile strength and hardness increase greatly, but the elongation decreases. With the increase of aluminum amount from ZA 5 to ZA 12, ZA22 and ZA27, the tensile strength increases gradually. ZA27 has the best comprehensive mechanical properties in these four kinds of ZA alloys. (3) Heat treatment can decrease the dendritic segregation and improve the elongation of ZA alloy, but make their strength decrease slightly. 展开更多
关键词 zinc-aluminum alloy heated mold continuous casting mechanical properties heat treatment
下载PDF
EXPERIMENTAL RESEARCH AND NUMERICAL SIMULATION OF MOLD TEMPERATURE FIELD IN CONTINUOUS CASTING OF STEEL 被引量:5
4
作者 X.S. Zheng M.H. Sha J.Z. Jin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第3期176-182,共7页
Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water- cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distrib... Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water- cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distribution of a mold wall, a simulated apparatus of mold was designed and experiments were performed by it. The measured results indicated that the mold wall temperature approaches the temperature of cooling-water. An equivalent thermal-conductivity coefficient was proposed and deduced on the basis of the conclusion of the experiments. This coefficient was applied to solve the heat transfer between the melt and cooling water, and to characterize the heat transfer capacity of the mold. By this equivalent thermal-conductivity coefficient, it is very easy and convenient to numerically simulate the solidification process of continuous casting. And the calculation results are in agreement with the experiments. The effects of custing speed and water flow rate on the mold temperature field were also discussed. 展开更多
关键词 continuous casting mold temperature field numerical simulation
下载PDF
Investigating on casting mold (or core) making with coated sand by the selected laser sintering 被引量:6
5
作者 Zitian FAN Naiyu HUANG +1 位作者 Yan LI Zhili LIU 《China Foundry》 SCIE CAS 2004年第2期122-126,共5页
Using a special coated sand as the material of the selected laser sintering (SLS), the authors test and investigate the strength change of the test samples in terms of different sintering parameters (scanning speed, l... Using a special coated sand as the material of the selected laser sintering (SLS), the authors test and investigate the strength change of the test samples in terms of different sintering parameters (scanning speed, laser power, sintering thickness, and so on). The characteristics of coated sand hardening by laser beam are analyzed. The sintered mold (or core) for given casting is poured with molten metal. 展开更多
关键词 rapid prototyping selected laser sintering(SLS) laser scanning casting mold(core) technological parameters
下载PDF
Study and Application of Mold Filling Simulation of Shaped Castings 被引量:5
6
作者 Baicheng LIU Wei QIU +1 位作者 Houfa SHEN Zhiqiang GAO (Dept. of Mechanical Engineering, Tsinghua University Beijing 100084, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第2期107-112,共6页
In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF me... In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF method to determine free surface, 2) an explicit scheme of enthalpy to solve the energy equation more efficiently, and 3) an effective treatment to modify the flux deviation due to pressure iteration. In order to verify these methods, well controlled experiments have been repeatedly done with both water analog and gray iron pouring experiments to record the flow patterns and temperature variations. The calculated results are in accordance with the experimental ones. For the applications, the simulated initial temperature distribution right after mold filling was used to analyse subsequent solidification and to predict shrinkage defects. Actual castings were poured and tested in a foundry plant. The reuslts show that the defects predication with considering fluid flow effects is more precise than that without considering the effects. 展开更多
关键词 SIMULATION Study and Application of mold Filling Simulation of Shaped castings mold
下载PDF
Forming Mechanism of Gaseous Defect in Ti-48Al-2Cr-2Nb Exhaust Valves Formed with Permanent Mold Centrifugal Casting Method 被引量:2
7
作者 Research Notes Wenbin SHENG, Jingjie GUO, Yanqing SU, Hongsheng DING and Jun JIA School of Materials Science and Engineering, Harbin Institute of Technology. Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期569-571,共3页
A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathemat... A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance. The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results. 展开更多
关键词 Forming Mechanism of Gaseous Defect in Ti-48Al-2Cr-2Nb Exhaust Valves Formed with Permanent mold Centrifugal casting Method mold TI Al CR
下载PDF
Study on Numerical Simulation of Mold Filling and Heat Transfer in Die Casting Process 被引量:17
8
作者 Liangrong JIA, Shoumei XIONG and Baicheng LIU (Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期269-272,共4页
A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow... A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice. 展开更多
关键词 Study on Numerical Simulation of mold Filling and Heat Transfer in Die casting Process mold SIMULATION
下载PDF
Properties of fiber reinforced plaster molds for investment casting 被引量:1
9
作者 Jie Ren Xiang Chen +2 位作者 Yan-xiang Li Yuan Liu Hua-wei Zhang 《China Foundry》 SCIE 2020年第5期332-340,共9页
In order to improve the performance of plaster molds for investment casting,a diverse content of glass fiber and polypropylene(PP)fiber was incorporated into the slurry for the preparation of a fiber-reinforced mold.T... In order to improve the performance of plaster molds for investment casting,a diverse content of glass fiber and polypropylene(PP)fiber was incorporated into the slurry for the preparation of a fiber-reinforced mold.The green and fired bending strengths,thermal expansion properties,permeability,and thermal shock resistance of the mold were examined,and the scanning electron microscope(SEM)with energy dispersive spectrometer(EDS)was applied for the observation of fracture morphology.With appropriate content,the introduction of glass fiber was proved to increase the green bending strength and fired bending strength,restrain the thermal expansion and improve the thermal shock resistance of the mold,while the polypropylene fiber added was able to raise the green bending strength and the permeability,reduce the thermal expansion and heighten the thermal shock resistance as well,though the fired bending strength would be weakened slightly.Evenly distributed fibers were capable of enhancing the mechanical properties of the matrix,but agglomerations and bundles of fibers resulting from excessive addition had a negative impact.Meanwhile,it was also manifested that micropores left by ablative polypropylene fibers could improve the permeability and reduce the thermal expansion of the mold,and the fired bending strength would be decreased slightly by the deterioration of continuous structure.Three different ratios of hybrid fiber were employed in plaster molds,which can meet altered requirement of castings.The samples modified with hybrid fiber possessed lower thermal deformation,higher air permeability,and better resistance of thermal shock,while the mechanical strength was equal to the fiber free sample or slightly increased. 展开更多
关键词 plaster mold investment casting fiber-reinforced bending strength thermal expansion PERMEABILITY thermal shock resistance
下载PDF
Flow and Temperature Fields in Slab Continuous Casting Molds 被引量:1
10
作者 Yin Zhang Liguo Cao +2 位作者 Youduo He Shiqi Li Yishen Shen(Institute of Metallurgical Engineering, Baotou University of Iron & Steel Technology Baotou 014010, China)(Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第2期103-106,共4页
In order to develop super-board and super-thick slabs, the flow and temperatur fields were studied in slab continuous casting molds under different practical conditions, such as slab dimensions, with-drawing slab spee... In order to develop super-board and super-thick slabs, the flow and temperatur fields were studied in slab continuous casting molds under different practical conditions, such as slab dimensions, with-drawing slab speed, design of nozzles, and superheat tempera-ture. The results showed that it is preferred to incline nozzle bores downwards and the submerged depth of the nozzles is best kept be-tween 250-300 mm. In addition, the solidified shell is thicker at the wide face than that at the narrow face, while the thin points alongthe wide face ekist both in the center and in the some area toward each respective end. 展开更多
关键词 slab continuous casting mold flow field temperature field mathematical model
下载PDF
Effects of Rare Earth Oxide on Viscosity of Mold Fluxes for Continuous Casting 被引量:1
11
作者 王德永 姜茂发 +3 位作者 刘承军 史培阳 姚永宽 王慧华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第1期68-72,共5页
The effects of RE (rare earth) oxide on viscosity of mold fluxes were investigated with a rotary viscometer. The results show that: (1) The viscosity of mold fluxes is remarkably increased by RE oxide addition, especi... The effects of RE (rare earth) oxide on viscosity of mold fluxes were investigated with a rotary viscometer. The results show that: (1) The viscosity of mold fluxes is remarkably increased by RE oxide addition, especially when the mass fraction of RE oxide is more than 10%. (2) By addition of RE oxide, precipitation of the insoluble particles with high melting point from the molten slag with the decreasing of the temperature leads to the increase of viscosity. Viscosity curve shows that RE oxide is soluble in some extent in mold fluxes. When RE oxide is in a state of supersaturation, the existence of insoluble particles also makes the viscosity of mold fluxes increase. (3) Not only the viscosity of mold fluxes can be reduced, but also the capacity to dissolve and absorb RE oxide can be increased by Li_2O, B_2O_3 and BaO. However, the contents of Li_2O, B_2O_3, and BaO should be controlled to suitable levels. (4) The solidification temperature of mold fluxes can be increased by the addition of RE oxide, which is unfavorable to heat transfer and lubrication of mold fluxes between steel shell and mold. 展开更多
关键词 mold fluxes for continuous casting VISCOSITY solidification temperature rare earths
下载PDF
Progress in the application of cold gas dynamic spraying to repairing continuous casting molds 被引量:1
12
作者 ZHANG Junbao LIANG Yongli ZHANG Huabin 《Baosteel Technical Research》 CAS 2011年第1期17-23,共7页
A new continuous casting mold repairing method--cold gas dynamic spraying (CGDS) is introduced. The study investigates the advantages of the CGDS process regarding repairing operation, such as convenient, in-situ re... A new continuous casting mold repairing method--cold gas dynamic spraying (CGDS) is introduced. The study investigates the advantages of the CGDS process regarding repairing operation, such as convenient, in-situ repairation,little heat delivery, microstructural and dimensional stability and other special applications. Microstructure and mechanical properties of the copper alloy coating, nickel coating, ceramic composite coating, and their interface to the substrates ,which are usually used in repairing operation have been researched by means of optical microscopy ( OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and micro-hardness tests. Experimental results have demonstrated the relative density of the copper alloy coating is as high as 98.7%, and that no obvious difference can be observed between the CrZrCu substrate and the Cu alloy coating in terms of microstructures; thus the interface is quite difficult to be identified. The bonding strength and micro-hardness of the Cu alloy coating reach up to 37 MPa and 310 HV0.2 ,respectively. The interface between the copper alloy coating and the nickel coating is either zigzag or wave shaped, and the cohesion is relatively good. As-sprayed nickel coating is dominated by severely deformed particles,and the relative density is up to 98.5%. Complete recrystallization occurred after annealing at 900℃ for one hour,while its micro-hardness remains as high as 124.1 HV02. All these results have indicated that CGDS is a promising technology for repairing the continuous casting mold and that its future development is prosperous as well. 展开更多
关键词 cold gas dynamic spraying (CGDS) continuous casting mold repairing COATING MICROSTRUCTURE mechanical property
下载PDF
Study on Meniscus Temperature Fluctuation during Mold Oscillation in Continuous Casting by Modeling Experiments
13
作者 雷作胜 张邦文 +1 位作者 邓康 任忠鸣 《Journal of Shanghai University(English Edition)》 CAS 2002年第3期236-237,共2页
The temperature of the meniscus in continuous casting was measured during mold oscillation by modeling experiments. It is found that the temperature of meniscus varied periodically along with mold oscillation. Based o... The temperature of the meniscus in continuous casting was measured during mold oscillation by modeling experiments. It is found that the temperature of meniscus varied periodically along with mold oscillation. Based on the above phenomenon, the mechanism of some techniques, such as, hot top mold, high frequency and low amplitude mold oscillation, soft contact mold electromagnetic continuous casting and so on, which can improve the quality of continuous casting billets, was analyzed. The results show that the decrease of the temperature fluctuation of early solidification shell is their common mechanism. 展开更多
关键词 continuous casting mold MENISCUS temperature fluctuation mold oscillation.
下载PDF
Optimization design of wide face water slots for medium-thick slab casting mold
14
作者 Xue-lin Yin Li Wu +6 位作者 Jun-jia Zhang Hui-jun Kang Zong-ning Chen Jin-song Chen Zhi-qiang Cao Ting-ju Li Tong-min Wang 《China Foundry》 SCIE 2016年第5期327-334,共8页
A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures meas... A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs. 展开更多
关键词 medium-thick slab casting mold water slots design heat flux profile thermal behavior finiteelement analysis
下载PDF
Effects of transient fluid flow and solidification on the transport of bubbles in a slab continuous casting mold
15
作者 HOU Angui XU Guodong +3 位作者 LIU Zhongqiu LI Baokuan ZHANG Li JIANG Maofa 《Baosteel Technical Research》 CAS 2014年第2期12-18,共7页
Transient molten steel flow in a slab continuous casting mold has been calculated using large eddy simulation, considering heat transfer and solidification. The transport of bubbles in the liquid pool of the solidifie... Transient molten steel flow in a slab continuous casting mold has been calculated using large eddy simulation, considering heat transfer and solidification. The transport of bubbles in the liquid pool of the solidified shell has been considered according to the dispersed phase model. A mathematical model has been used to evaluate the influence of bubble size, casting speed, and adsorption of nonmetallic inclusions on bubble removal and bubble distribution within the solidified shell in the mold. The results show that the ratio of bubbles floating to the top surface decreases with increasing casting speed and decreasing bubble diameter. Nonmetallic inclusion adsorption has a weak effect on the bubble. 展开更多
关键词 continuous casting mold large eddy simulation SOLIDIFICATION BUBBLE
下载PDF
INFLUENCE OF CASTING FLOW DEVIATION ON FLUID FLOW IN CASTING BILLET MOLD
16
作者 ZHA NG Jiongming (Anshan Iron and Steel Research Institute,Anshan, Liaoning, China)HE Jicheng LI Baokuan (Northeastern University, Shenyang, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第3期226-230,共5页
In this paper, the three dimensional flow field in the billet mold has been studied by simple numerical method.The influence caused by teeming deviation.from the mold center has been discussed.
关键词 continuos casting mold teeming.flow
下载PDF
Physical modeling and numerical simulation of electromagnetic stirring in a slab continuous casting mold
17
作者 LI Bin LEI Zuosheng +6 位作者 GE Jiangmeng ZHONG Yunbo REN Zhongming ZHOU Yueming WU Cunyou JIN Xiaoli WEI Rujun 《Baosteel Technical Research》 CAS 2016年第1期3-9,共7页
Through physical modeling and numerical simulation,the flow field in a slab continuous casting mold with electromagnetic stirring is measured under different casting parameters and stirring currents. To qualitatively ... Through physical modeling and numerical simulation,the flow field in a slab continuous casting mold with electromagnetic stirring is measured under different casting parameters and stirring currents. To qualitatively evaluate the flow field in the mold, two indexes,i, e., mold flux entrapment and velocity uniformity, are proposed. Based on these two indexes, some optimized stirring parameters under different casting conditions can be determined. 展开更多
关键词 slab continuous casting mold electromagnetic stirring optimized parameters
下载PDF
STUDY ON NUMERICAL SIMULATION OF MOLD-FILLING AND SOLIDIFICATION PROCESSES OF SHAPED CASTING 被引量:16
18
作者 Shoumei, Xiong Baicheng, Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1999年第1期5-11,共7页
The latest progress on the study of numerical simulation of mold filling and solidification process of shaped casting is reviewed. In mold filling process simulation of castings, the SOLA VOF algorithmis is improve... The latest progress on the study of numerical simulation of mold filling and solidification process of shaped casting is reviewed. In mold filling process simulation of castings, the SOLA VOF algorithmis is improved in efficient free surface treatment and turbulence consideration, and parallel computational techniques are implemented to accelerate the fluid flow calculation time as well. Methods for predication of shrinkage defects of steel castings and S G. iron castings are developed based on the solidification simulation. In order to reduce the residual stress and deformation of castings, a combined FDM/FEM method is implemented for the modelling of stresses. Numerical models for the simulation of micro structure and prediction of mechanical properties of S G. iron are developed. The verifications and applications of the simulation software show that the models and techniques adopted in current research work are efficient and appropriate for the numerical simulation of shaped castings. 展开更多
关键词 casting mold filling Solidification Numerical simulation
全文增补中
Low-cycle fatigue behavior of permanent mold cast and die-cast Al-Si-Cu-Mg alloys 被引量:2
19
作者 Chen Lijia Wang Di +1 位作者 Che Xin Li Feng 《China Foundry》 SCIE CAS 2012年第1期39-42,共4页
Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys.To feature their mechanical aspect of fatigue behavior,the low-cycle fatigue behavior of permanent mold cast and die-cast Al-Si-Cu-Mg all... Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys.To feature their mechanical aspect of fatigue behavior,the low-cycle fatigue behavior of permanent mold cast and die-cast Al-Si-Cu-Mg alloys at room temperature was investigated.The experimental results show that both permanent mold cast and die-cast Al-Si-Cu-Mg alloys mainly exhibit cyclic strain hardening.At the same total strain amplitude,the die-cast Al-Si-Cu-Mg alloy shows higher cyclic deformation resistance and longer fatigue life than does the permanent mold cast Al-Si-Cu-Mg alloy.The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior,and can be described by the Basquin and Coffin-Manson equations,respectively. 展开更多
关键词 permanent mold cast DIE-CAST aluminum alloy low-cycle fatigue fatigue life cyclic stress response
下载PDF
Motion Stability Analysis of Non-sinusoidal Oscillation of Mold Driven by Servomotor 被引量:2
20
作者 YAO Yunfeng LI Junxia FANG Yiming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1269-1276,共8页
The investments of the electro-hydraulic servo system of the mold non-sinusoidal oscillator are great, the modification ratio of the mechanical type is unable to be adjusted online, and some continuous casters suffer ... The investments of the electro-hydraulic servo system of the mold non-sinusoidal oscillator are great, the modification ratio of the mechanical type is unable to be adjusted online, and some continuous casters suffer from server resonance during the casting. A mold non-sinusoidal oscillation mechanism driven by servomotor is proposed and the prototype is produced in the lab, the investment is low and the modification ratio is can be adjusted online, and the stability problem is studied. At first the dynamics model of the servomotor non-sinusoidal oscillation is established, and the kinematics differential function is deduced. Furthermore, based on the harmonic balance method, the eigenvalues of the system are solved; the criterion of the stability of the system is put forward. In addition, the eigenvalues and harmonic with different oscillating parameters are analyzed. Analytical results show that the real parts of the eigenvalues are positive, the system will be unstable, and the resonance will occur when the positive real parts of the eigenvalues are extremum. A foundation is established for solving the running smooth problem and next application of this mechanism. 展开更多
关键词 continuous casting mold non-sinusoidal oscillation servomotor stability resonance
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部