Rotation sintering, also known as slush molding, is used to manufacture molded skins, such as dashboards or door interior panels for cars. At present, approximately 80% of such molded skins are manufactured using elec...Rotation sintering, also known as slush molding, is used to manufacture molded skins, such as dashboards or door interior panels for cars. At present, approximately 80% of such molded skins are manufactured using electroforms to achieve the complex free-form surfaces, and surface structures, such as leather graining that the industry demands. The manufacture of these electroforms is, however, time-consuming and expensive. This project aims to replace conventional electroforms with laser-drilled molds. Holes in tool molds should be drilled by using laser radiation as part of an automated process. The system consists of a robot with a fiber-laser beam source. A CAx (computer-aided x) process chain has been developed for this purpose in which the CAD (computer-aided design) data of the tool molds are processed, drill hole fields generated, and a machine-specific RC (robot control) program created. Process-specific fundamentals, such as suitable process windows and process control, have been devised to manufacture holes using fiber laser radiation The advantages of the new laser-drilled tool molds may result in substituting them for conventional electroforms, allowing old markets to be re-entered or additional markets to be created and targeted through new molds or lower costs.展开更多
文摘Rotation sintering, also known as slush molding, is used to manufacture molded skins, such as dashboards or door interior panels for cars. At present, approximately 80% of such molded skins are manufactured using electroforms to achieve the complex free-form surfaces, and surface structures, such as leather graining that the industry demands. The manufacture of these electroforms is, however, time-consuming and expensive. This project aims to replace conventional electroforms with laser-drilled molds. Holes in tool molds should be drilled by using laser radiation as part of an automated process. The system consists of a robot with a fiber-laser beam source. A CAx (computer-aided x) process chain has been developed for this purpose in which the CAD (computer-aided design) data of the tool molds are processed, drill hole fields generated, and a machine-specific RC (robot control) program created. Process-specific fundamentals, such as suitable process windows and process control, have been devised to manufacture holes using fiber laser radiation The advantages of the new laser-drilled tool molds may result in substituting them for conventional electroforms, allowing old markets to be re-entered or additional markets to be created and targeted through new molds or lower costs.