In this paper, by capturing the atomic information and reflecting the behaviour governed by the nonlinear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-...In this paper, by capturing the atomic information and reflecting the behaviour governed by the nonlinear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT's) is established to describe the nonlinear stress-strain curve of SWCNT's and to predict both the elastic properties and breaking strain of SWCNT's during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT's.展开更多
This paper have performed molecular static calculations with the quantum corrected Sutten Chen type many body potential to study size effects on the elastic modulus of Au nanowires with [100], [110] and [111] crystall...This paper have performed molecular static calculations with the quantum corrected Sutten Chen type many body potential to study size effects on the elastic modulus of Au nanowires with [100], [110] and [111] crystallographic directions, and to explore the preferential growth orientation of Au nanowires. The main focus of this work is the size effects on their surface characteristics. Using the common neighbour analysis, this paper deduces that surface region approximately consists of two layer atoms. Further, it extracts the elastic modulus of surface, and calculate surface energy of nanowire. The results show that for all three directions the Young's modulus of nanowire increases as the diameter increases. Similar trend has been observed for the Young's modulus of surface. However, the atomic average potential energy of nanowire shows an opposite change. Both the potential and surface energy of [110] nanowire are the lowest among all three orlentational nanowires, which helps to explain why Au nanowires possess a [110] preferred orientation during the experimental growth proceeds.展开更多
An extremely simple formula to estimate the heat of formation of complexes between an ion and a polar molecule or between highly polar systems is presented.The formula is entirely electrostatic and the expression used...An extremely simple formula to estimate the heat of formation of complexes between an ion and a polar molecule or between highly polar systems is presented.The formula is entirely electrostatic and the expression used is verified by means of perturbation theory.This formula is test- ed for several ion-molecule and molecule-molecule pairs.It is also applied to estimate the heat of hydration of simple salts.展开更多
基金the National Natural Science Foundation of China(10121202,90305015 and 10328203)the Key Grant Project of Chinese Ministry of Education (0306)+1 种基金the Research Grants Council of the Hong Kong Special Administrative RegionChina(HKU7195/04E)
文摘In this paper, by capturing the atomic information and reflecting the behaviour governed by the nonlinear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT's) is established to describe the nonlinear stress-strain curve of SWCNT's and to predict both the elastic properties and breaking strain of SWCNT's during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT's.
基金support by the National 973 Project of China (Grant No 2006CB605102)the National Natural Science Foundation of China (Grant No 10702056)Program for New Century Excellent Talents in Fujian Province University,China (NCETFJ)
文摘This paper have performed molecular static calculations with the quantum corrected Sutten Chen type many body potential to study size effects on the elastic modulus of Au nanowires with [100], [110] and [111] crystallographic directions, and to explore the preferential growth orientation of Au nanowires. The main focus of this work is the size effects on their surface characteristics. Using the common neighbour analysis, this paper deduces that surface region approximately consists of two layer atoms. Further, it extracts the elastic modulus of surface, and calculate surface energy of nanowire. The results show that for all three directions the Young's modulus of nanowire increases as the diameter increases. Similar trend has been observed for the Young's modulus of surface. However, the atomic average potential energy of nanowire shows an opposite change. Both the potential and surface energy of [110] nanowire are the lowest among all three orlentational nanowires, which helps to explain why Au nanowires possess a [110] preferred orientation during the experimental growth proceeds.
文摘An extremely simple formula to estimate the heat of formation of complexes between an ion and a polar molecule or between highly polar systems is presented.The formula is entirely electrostatic and the expression used is verified by means of perturbation theory.This formula is test- ed for several ion-molecule and molecule-molecule pairs.It is also applied to estimate the heat of hydration of simple salts.