A set of 50 rice genotypes comprising landraces, local selections, and improved varieties were characterized using simple sequence repeat(SSR) and inter simple sequence repeat(ISSR) markers to study genetic divers...A set of 50 rice genotypes comprising landraces, local selections, and improved varieties were characterized using simple sequence repeat(SSR) and inter simple sequence repeat(ISSR) markers to study genetic diversity and population structure. Following unweighted pair group method with arithmetic mean based clustering using binary data of polymorphic markers, the genotypes were grouped into 5 clusters and 11 sub-clusters, whereas population structure analysis separated 50 rice genotypes into 5 sub-populations. Grouping of rice genotypes showed better resemblance with the pedigree information of the genotypes. Both genetic diversity and population structure analysis separated majority of the improved varieties from landraces and local selections. Some of the SSR markers amplified unique alleles which were specific to a particular genotype and could distinguish them from the rest. The results indicate that these rice genotypes exhibit a higher genetic diversity and can be very useful in rice improvement program.展开更多
文摘A set of 50 rice genotypes comprising landraces, local selections, and improved varieties were characterized using simple sequence repeat(SSR) and inter simple sequence repeat(ISSR) markers to study genetic diversity and population structure. Following unweighted pair group method with arithmetic mean based clustering using binary data of polymorphic markers, the genotypes were grouped into 5 clusters and 11 sub-clusters, whereas population structure analysis separated 50 rice genotypes into 5 sub-populations. Grouping of rice genotypes showed better resemblance with the pedigree information of the genotypes. Both genetic diversity and population structure analysis separated majority of the improved varieties from landraces and local selections. Some of the SSR markers amplified unique alleles which were specific to a particular genotype and could distinguish them from the rest. The results indicate that these rice genotypes exhibit a higher genetic diversity and can be very useful in rice improvement program.