Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marke' information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interf...Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marke' information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interference from environment in order to draw more reliable results. The coincidence rate of range (CR) was the optimal parameter. Mean Simpson index (MD), mean Shannon-Weaver index of genetic diversity (M1) and mean polymorphism information content (MPIC) were important evaluating parameters. The variable rate of coefficient of variation (VR) could act as an important reference parameter for evaluating the variation degree of core collection. Percentage of polymorphic loci (p) could be used as a determination parameter for the size of core collection. Mean difference percentage (MD) was a determination parameter for the reliability judgment of core collection. The effective evaluating parameters for core collection selected in the research could be used as criteria for sampling percentage in different plant germplasm populations.展开更多
In the present study, a strategy was proposed for constructing plant core subsets by clusters based on the combination of continuous data for genotypic values and discrete data for molecular marker InformaUon. A mixed...In the present study, a strategy was proposed for constructing plant core subsets by clusters based on the combination of continuous data for genotypic values and discrete data for molecular marker InformaUon. A mixed linear model approach was used to predict genotyplc values for eliminating the environment effect. The "mixed genetic distance" was designed to solve the difficult problem of combining continuous and discrete data to construct a core subset by cluster. Four commonly used genetic distances for continuous data (Euclidean distance, standardized Euclidean distance, city block distance, and Mahalanobls distance) were used to assess the validity of the conUnuous data part of the mixed genetic distance; three commonly used genetic distances for discrete data (cosine distance, correlaUon distance, and Jaccard distance) were used to assess the validity of the discrete data part of the mixed genetic distance, A rice germplasm group with eight quantitative traits and information for 60 molecular markers was used to evaluate the validity of the new strategy. The results suggest that the validity of both parts of the mixed geneUc distance are equal to or higher than the common geneUc distance. The core subset constructed on the basis of a combination of data for genotyplc values and molecular marker information was more representative than that constructed on the basis of data from genotypic values or molecular marker informaUon alone. Moreover, the strategy of using combined data was able to treat dominant marker informaUon and could combine any other continuous data and discrete data together to perform cluster to construct a plant core subset.展开更多
There are nearly 1 000 rice landrace varieties in the Taihu basin, China. To assess the genetic diversity of the rice, 24 intragenic molecular markers(representing 17 starch synthesis-related genes) were investigate...There are nearly 1 000 rice landrace varieties in the Taihu basin, China. To assess the genetic diversity of the rice, 24 intragenic molecular markers(representing 17 starch synthesis-related genes) were investigated in 115 Taihu basin rice landraces and 87 improved cultivars simultaneously. The results show that the average genetic diversity and polymorphism information content values of the landraces were higher than those of improved cultivars. In total, 41 and 39 allele combinations(of the 17 genes) were derived from the landraces and improved cultivars, respectively; only two identical allele combinations were found bet ween the two rice variety sources. Cluster analysis, based on the molecular markers, revealed that the rice varieties could be subdivided into five groups and, within these, the japonica improved rice and japonica landrace rice varieties were in two separate groups. According to the quality reference criteria to classify the rice into grades, some of the landraces were found to perform we ll, in terms of starch quality. For example, according to NY /T595-2002 criteria from the Ministry of Agriculture of China, 25 and 33 landraces reached grade 1, in terms of their apparent amylose content and gel consistency. Th e varieties that had outstanding quality could be used as breeding materials for rice quality breeding programs in the future. Our study is useful for future applications, such as genetic diversity studies, the protection of rice variety and improvment of rice quality in breeding programs.展开更多
基金the National Natural Science Foundation of China (Grant No. 30270759) the Science and Technology Department of Zhejiang Province (Grant No. 2005C32001).
文摘Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marke' information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interference from environment in order to draw more reliable results. The coincidence rate of range (CR) was the optimal parameter. Mean Simpson index (MD), mean Shannon-Weaver index of genetic diversity (M1) and mean polymorphism information content (MPIC) were important evaluating parameters. The variable rate of coefficient of variation (VR) could act as an important reference parameter for evaluating the variation degree of core collection. Percentage of polymorphic loci (p) could be used as a determination parameter for the size of core collection. Mean difference percentage (MD) was a determination parameter for the reliability judgment of core collection. The effective evaluating parameters for core collection selected in the research could be used as criteria for sampling percentage in different plant germplasm populations.
基金Supported by the National Natural Science Foundation of China (30270759).
文摘In the present study, a strategy was proposed for constructing plant core subsets by clusters based on the combination of continuous data for genotypic values and discrete data for molecular marker InformaUon. A mixed linear model approach was used to predict genotyplc values for eliminating the environment effect. The "mixed genetic distance" was designed to solve the difficult problem of combining continuous and discrete data to construct a core subset by cluster. Four commonly used genetic distances for continuous data (Euclidean distance, standardized Euclidean distance, city block distance, and Mahalanobls distance) were used to assess the validity of the conUnuous data part of the mixed genetic distance; three commonly used genetic distances for discrete data (cosine distance, correlaUon distance, and Jaccard distance) were used to assess the validity of the discrete data part of the mixed genetic distance, A rice germplasm group with eight quantitative traits and information for 60 molecular markers was used to evaluate the validity of the new strategy. The results suggest that the validity of both parts of the mixed geneUc distance are equal to or higher than the common geneUc distance. The core subset constructed on the basis of a combination of data for genotyplc values and molecular marker information was more representative than that constructed on the basis of data from genotypic values or molecular marker informaUon alone. Moreover, the strategy of using combined data was able to treat dominant marker informaUon and could combine any other continuous data and discrete data together to perform cluster to construct a plant core subset.
基金financially supported by the National Natural Science Foundation of China(30800603)the Science and Technology Plan Projects of Taicang City,China(TC214YY3)the Building Program of the Science and Technology Innovation Team of Chien-Shiung Institute of Technology,China(2013CX02)
文摘There are nearly 1 000 rice landrace varieties in the Taihu basin, China. To assess the genetic diversity of the rice, 24 intragenic molecular markers(representing 17 starch synthesis-related genes) were investigated in 115 Taihu basin rice landraces and 87 improved cultivars simultaneously. The results show that the average genetic diversity and polymorphism information content values of the landraces were higher than those of improved cultivars. In total, 41 and 39 allele combinations(of the 17 genes) were derived from the landraces and improved cultivars, respectively; only two identical allele combinations were found bet ween the two rice variety sources. Cluster analysis, based on the molecular markers, revealed that the rice varieties could be subdivided into five groups and, within these, the japonica improved rice and japonica landrace rice varieties were in two separate groups. According to the quality reference criteria to classify the rice into grades, some of the landraces were found to perform we ll, in terms of starch quality. For example, according to NY /T595-2002 criteria from the Ministry of Agriculture of China, 25 and 33 landraces reached grade 1, in terms of their apparent amylose content and gel consistency. Th e varieties that had outstanding quality could be used as breeding materials for rice quality breeding programs in the future. Our study is useful for future applications, such as genetic diversity studies, the protection of rice variety and improvment of rice quality in breeding programs.