A systematic elaboration is given on atomic and molecular theory problems encountered in dealing with space science and engineering. Three sections are presented in the paper on calculations for gas thermodynamic and ...A systematic elaboration is given on atomic and molecular theory problems encountered in dealing with space science and engineering. Three sections are presented in the paper on calculations for gas thermodynamic and transfer properties, characteristics of the optical radiation from the reentry' bodies, and the interaction between surfaces of man-made satellites and incident particles. Researches on them are much related to the fundamental problems regarding the atomic and molecular theory.展开更多
Dressed four-wave mixing (DFWM) spectroscopy is investigated theoretically in some micrometric thin cells. It is found that DFWM spectra can be modified by polarization interference of atoms and transient effects in...Dressed four-wave mixing (DFWM) spectroscopy is investigated theoretically in some micrometric thin cells. It is found that DFWM spectra can be modified by polarization interference of atoms and transient effects induced by atom-wall collision. This modification can lead to width-narrowing of DFWM lines and facilitates to implement experiment of high resolution DFWM spectroscopy in a confined atomic system.展开更多
A fountain atomic clock based on cold 87Rb atoms has been in operation in our laboratory for several months. We therefore report the design of the rubidium fountain clock including its physical package, optical system...A fountain atomic clock based on cold 87Rb atoms has been in operation in our laboratory for several months. We therefore report the design of the rubidium fountain clock including its physical package, optical system and daily operation. Ramsey fringes have been attained with the signal to noise ratio of about 100.展开更多
The time-dependent quantum wave packet method is used to investigate the dynamics for the Li2 molecule, and the time-resolved photoelectron spectra (TRPES) of the Li2 molecule are calculated. At the short delay time...The time-dependent quantum wave packet method is used to investigate the dynamics for the Li2 molecule, and the time-resolved photoelectron spectra (TRPES) of the Li2 molecule are calculated. At the short delay time, the particular phenomenon of TRPES with four peaks is qualitatively interpreted in a dressed state picture by analyzing wave packet motion on light-induced potential (LIP). The significant difference in the electronic structure of E1∑g^+ between the inner and outer turning points has an impact on the TRPES. The control for the first excited state A1∑u^+ of the initial wave packet is discussed.展开更多
The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster ...The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster state with atomic ensembles based on the Rydberg blockade. Using similar resources as the earlier scheme, here we propose an experimentally feasible scheme of preparing arbitrary four-qubit W class of maximally and non- maximally entangled states with atomic ensembles in a single step. Moreover, we carefully analyze the realistic noises and predict that four-qubit W states can be produced with high fidelity (F - 0.994) via our scheme.展开更多
Using the single-atom induced dipole moment under strong field approximation as a source, we suggest a model to simulate the macroscopic high-order harmonic generation (HHG) from the mixed gases (He and Ne) intera...Using the single-atom induced dipole moment under strong field approximation as a source, we suggest a model to simulate the macroscopic high-order harmonic generation (HHG) from the mixed gases (He and Ne) interacting with intense infrared laser by solving the three-dimensional Maxwell's equation of the harmonic field. Regular destructive interference (DI) and constructive interference (CI) are observed in the macroscopic HHG spectra when the gas jet is put at a good phase-matching position. A semiclassical model of short and long electron trajectories is applied to interpret the DI and CI of HHG qualitatively.展开更多
The equation of motion of two-level chromium atoms in Gauss standing laser wave is discussed and the distribution of chromium atoms is given under different transverse velocity conditions. The results show that the fo...The equation of motion of two-level chromium atoms in Gauss standing laser wave is discussed and the distribution of chromium atoms is given under different transverse velocity conditions. The results show that the focusing position of atoms will be affected by the transverse velocity of atoms. Based on the four-order Runge- Kutta method, the locus of chromium atoms in Gauss standing laser wave is simulated. The three-dimensional characteristics of nanometer structures are stimulated under perfect and emanative conditions.展开更多
We propose a scheme for generating a χ-type four-atom entangled state in cavity QED. In the present scheme, the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a strong classica...We propose a scheme for generating a χ-type four-atom entangled state in cavity QED. In the present scheme, the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a strong classical field. The scheme is insensitive to the cavity decay and the thermal field, which is of importance from the experimental point of view.展开更多
A drug delivery system via multi-walled carbon nanotube (MWNT) vehicle was synthesized in aqueous solution. MWNTs were first noncovalently functionalized with chitosan oligomers (CS) with a molecule weight of 4000...A drug delivery system via multi-walled carbon nanotube (MWNT) vehicle was synthesized in aqueous solution. MWNTs were first noncovalently functionalized with chitosan oligomers (CS) with a molecule weight of 4000-6000, making MWNTs water-soluble, and then a cancer ancillary drug tea polyphenols (TP) was conjugated mainly via the hydrogen bond between CS and TP molecules, making MWNTs efficient vehicle for drug delivering. The release of drug molecules can be realized by pH variation and γ-radiation, leading to new methods for controlling drug release from carbon nanotubes carrier. Due to the high penetrability of γ-rays, γ-radiation shows up new opportunities in controlled drug release, possibly facilitating the future cancer treatment in vivo.展开更多
A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time rema...A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time remains unchanged with the increasing number of qubits. In addition, the influence of cavity decay and atomic spontaneous emission on the gate fidelity and photon loss probability is also discussed by numerical calculation.展开更多
One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing- laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral...One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing- laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral chromium atoms in a laser standing wave with different laser power is discussed and the simulation result shows that the full width at half maximum (FWHM) of a nanometer stripe is 115nm and the contrast is 2.5:1 with laser power 3.93mW; the FWHM is 0.8nm and the contrast is 27:1 with laser power 16mW, the optimal laser power; but with laser power increasing to 50mW, the nanometer structure forms multi-crests and the quality worsens quickly with increasing laser power.展开更多
The molecular dynamics (MD) method is used to simulate the interactions of energetic C20 clusters with the dense plasma targets within the framework of the linear Vlasov-Poisson theory. The influences of various clu...The molecular dynamics (MD) method is used to simulate the interactions of energetic C20 clusters with the dense plasma targets within the framework of the linear Vlasov-Poisson theory. The influences of various clusters (H2, N2, C20 and C60 respectively) on stopping power are discussed. The simulation results show that the vicinage effects in the Coulomb explosion dynamics and the stopping power are strongly affected by the variations in the cluster speed and the plasma parameters. Coulomb explosions are found to proceed faster for higher speeds, lower plasma densities and higher electron temperatures. In addition, the cluster stopping power is strongly enhanced in the early stages of Coulomb explosions due to the vicinage effect, but this enhancement eventually diminishes, after the cluster constituent ions are sufficiently separated. For the large and heavy clusters, the stopping power ratio reaches much higher values in the early stage of Coulomb explosion owing to the constructive interferences in the vicinage effect.展开更多
By using a pump-probe technique, the nascent rotational and vibrational state distributions of CsH are obtained in the Cs(6^2 D,7^2 D) plus H2 reaction. The nascent CsH molecules are found to populate the lowest two...By using a pump-probe technique, the nascent rotational and vibrational state distributions of CsH are obtained in the Cs(6^2 D,7^2 D) plus H2 reaction. The nascent CsH molecules are found to populate the lowest two vibrational (v″ = 0 and 1) levels of the ground electronic state. By comparing the spectral intensities of the CsH action spectra with those of pertinent Cs atomic fluorescence excitation spectra, the relative reactivity with 1-12 is in an order of6^2D3/2 〉 6^2D5/2 〉 7^2D3/2 〉 7^2D5/2. The rotational temperatures are found to be slightly below the cell temperature. The relative fractions (〈fV〉, 〈fR〉, 〈fT〉) of average energy disposal are derived as (0.2,0.12,0.68), (0.2,0.12,0.68), (0.07,0.04,0.89) and (0.07,0.04,0.89) for the 6^2D3/2, 6^2D5/2, 7^2D3/2 and 7^2D5/2, respectively. The major available energy is released as translation. These results support that the reaction mechanism of Cs(6^2 D,7^2 D) plus 112 is primarily a eollinear abstraction and not an insertion.展开更多
The quantum phase transition from the Mott insulator to the superfluid phases of the bosonic atoms trapped in an optical lattice, in which the on-site interaction carl be tuned by a Feshbach resonance, is investigated...The quantum phase transition from the Mott insulator to the superfluid phases of the bosonic atoms trapped in an optical lattice, in which the on-site interaction carl be tuned by a Feshbach resonance, is investigated by a variational approach within mean-field theory. We derive an extended Bos^Hubbard model to describe this ultracold atomic system. By theoretical calculation and analysis, the phase diagram is shown clearly, and we find an exciting and novel phenomenon that is the appearance of the Mort insulator-sea (MI-sea). Meanwhile, the experimental feasibility of observing the MI-sea is discussed by analyzing the published data related to the Fashbaeh resonance at present. Finally, the potential application of the MI-sea for quantum information processing and quantum computation is also discussed in detail展开更多
We investigate the momentum and energy correlations between the two electrons from nonsequential double ionization (NSDI) of helium by strong two-color pulses with the classical three-dimensional ensemble model. The...We investigate the momentum and energy correlations between the two electrons from nonsequential double ionization (NSDI) of helium by strong two-color pulses with the classical three-dimensional ensemble model. The correlated momentum distribution in the direction parallel to the laser field exhibits an arc-like structure and the sum-energy spectrum shows a sharp peak for the NSDI of helium in the two-color fields. Back analysis reveals that the narrow time interval during which recollisions occur, the low returning energy and the short time delay between recollision and double ionization lead to the novel momentum and energy correlations.展开更多
We present a simple scheme for the probabilistic generation of the $n$-qubit W state of three-level systems in cavity quantum electrodynamics. Once the W state is prepared, it will be insensitive to the spontaneous em...We present a simple scheme for the probabilistic generation of the $n$-qubit W state of three-level systems in cavity quantum electrodynamics. Once the W state is prepared, it will be insensitive to the spontaneous emission of atoms due to the fact that only the two degenerate ground states of the three-level atoms are involved. With time evolution of the system, the success probability and the experimental feasibility are also discussed.展开更多
We demonstrate an experimental observation of coherent population trapping-Ramsey interference in cold 87Rb atoms by employing the time-domain separated oscillatory fields' method. The interference fringe with line w...We demonstrate an experimental observation of coherent population trapping-Ramsey interference in cold 87Rb atoms by employing the time-domain separated oscillatory fields' method. The interference fringe with line width of 80 Hz is obtained. We propose a novel method to measure the cold atom number. The measurement is insensitive to the pump beam intensity, the single photon detuning and even the initial state population. We use this method to normalize the interference signal and to improve the signal-to-noise ratio significantly.展开更多
We report on the phenomena of the periodic spontaneous collapse and revival in the dynamics of an atomic beam interacting with a single-mode and coherent-state light field. Conventional collapse and revival by Eberly ...We report on the phenomena of the periodic spontaneous collapse and revival in the dynamics of an atomic beam interacting with a single-mode and coherent-state light field. Conventional collapse and revival by Eberly et al. [Phys. Rev. Lett. 44(1980)1323 ] are presented in the case of the evolution with time of the population inversion. Here, we study the evolution with coupling strength of population inversion. We define the collapse and revival coupling strengths as characteristic parameters to describe the above collapse and revival. Furthermore, we present the analytic formulas for the population inversion, the collapse and revival coupling strengths.展开更多
We illustrate our experimental observation of coexisting the controllable spatial splitting and intensity suppression of four-wave mixing (FWM) beam in a V-type three-level atomic system. The peak number and separat...We illustrate our experimental observation of coexisting the controllable spatial splitting and intensity suppression of four-wave mixing (FWM) beam in a V-type three-level atomic system. The peak number and separation distance of the FWM beam are controlled by the intensities and frequencies of the laser beams, as well as atomic density.展开更多
文摘A systematic elaboration is given on atomic and molecular theory problems encountered in dealing with space science and engineering. Three sections are presented in the paper on calculations for gas thermodynamic and transfer properties, characteristics of the optical radiation from the reentry' bodies, and the interaction between surfaces of man-made satellites and incident particles. Researches on them are much related to the fundamental problems regarding the atomic and molecular theory.
基金Support from the National Natural Science Foundation of China under Grant No 10874139, and the Major Program of Science Foundation of Xi'an University of Arts and Science.
文摘Dressed four-wave mixing (DFWM) spectroscopy is investigated theoretically in some micrometric thin cells. It is found that DFWM spectra can be modified by polarization interference of atoms and transient effects induced by atom-wall collision. This modification can lead to width-narrowing of DFWM lines and facilitates to implement experiment of high resolution DFWM spectroscopy in a confined atomic system.
基金Supported by the National Basic Research Program of China under Grant No 2005CB724506, and the National Natural Science Foundation of China under Grant No 10604058.
文摘A fountain atomic clock based on cold 87Rb atoms has been in operation in our laboratory for several months. We therefore report the design of the rubidium fountain clock including its physical package, optical system and daily operation. Ramsey fringes have been attained with the signal to noise ratio of about 100.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60577050 and 10574039, the Key Project of Science and Technology Research of Education Ministry of China under Grant No 206084, the Innovation Scientists and Technicians Troop Construction Projects of Henan Province under Grant No 084100510011, the Innovation Talents of Institution of Higher Education of Henan Province under Grant No 2006KYCX002.
文摘The time-dependent quantum wave packet method is used to investigate the dynamics for the Li2 molecule, and the time-resolved photoelectron spectra (TRPES) of the Li2 molecule are calculated. At the short delay time, the particular phenomenon of TRPES with four peaks is qualitatively interpreted in a dressed state picture by analyzing wave packet motion on light-induced potential (LIP). The significant difference in the electronic structure of E1∑g^+ between the inner and outer turning points has an impact on the TRPES. The control for the first excited state A1∑u^+ of the initial wave packet is discussed.
基金Supported by the National Natural Science Foundation of China under Grant No 10774192, the Fund of Innovation of Graduate School of National University of Defense Technology under Grant No 080201.
文摘The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster state with atomic ensembles based on the Rydberg blockade. Using similar resources as the earlier scheme, here we propose an experimentally feasible scheme of preparing arbitrary four-qubit W class of maximally and non- maximally entangled states with atomic ensembles in a single step. Moreover, we carefully analyze the realistic noises and predict that four-qubit W states can be produced with high fidelity (F - 0.994) via our scheme.
基金Supported by the National Natural Science Foundation of China under Grant No 10674112, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20096203110001, the Foundation of Center of Theoretical Nuclear Physics of National Laboratory of Heavy Ion Accelerator of Lanzhou, and Foundation of Northwest Normal University under Grant No NWNU-KJCXGC-03-62.
文摘Using the single-atom induced dipole moment under strong field approximation as a source, we suggest a model to simulate the macroscopic high-order harmonic generation (HHG) from the mixed gases (He and Ne) interacting with intense infrared laser by solving the three-dimensional Maxwell's equation of the harmonic field. Regular destructive interference (DI) and constructive interference (CI) are observed in the macroscopic HHG spectra when the gas jet is put at a good phase-matching position. A semiclassical model of short and long electron trajectories is applied to interpret the DI and CI of HHG qualitatively.
基金Supported by the National Natural Science Foundation of China under Grant No 11064002.
文摘The equation of motion of two-level chromium atoms in Gauss standing laser wave is discussed and the distribution of chromium atoms is given under different transverse velocity conditions. The results show that the focusing position of atoms will be affected by the transverse velocity of atoms. Based on the four-order Runge- Kutta method, the locus of chromium atoms in Gauss standing laser wave is simulated. The three-dimensional characteristics of nanometer structures are stimulated under perfect and emanative conditions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60878059 and 10947147, the Fund of Educational Committee of Fujian Province under Grant No JB08066, and the Fund from Fujian Normal University under Grant No 2008100220.
文摘We propose a scheme for generating a χ-type four-atom entangled state in cavity QED. In the present scheme, the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a strong classical field. The scheme is insensitive to the cavity decay and the thermal field, which is of importance from the experimental point of view.
文摘A drug delivery system via multi-walled carbon nanotube (MWNT) vehicle was synthesized in aqueous solution. MWNTs were first noncovalently functionalized with chitosan oligomers (CS) with a molecule weight of 4000-6000, making MWNTs water-soluble, and then a cancer ancillary drug tea polyphenols (TP) was conjugated mainly via the hydrogen bond between CS and TP molecules, making MWNTs efficient vehicle for drug delivering. The release of drug molecules can be realized by pH variation and γ-radiation, leading to new methods for controlling drug release from carbon nanotubes carrier. Due to the high penetrability of γ-rays, γ-radiation shows up new opportunities in controlled drug release, possibly facilitating the future cancer treatment in vivo.
文摘A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time remains unchanged with the increasing number of qubits. In addition, the influence of cavity decay and atomic spontaneous emission on the gate fidelity and photon loss probability is also discussed by numerical calculation.
文摘One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing- laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral chromium atoms in a laser standing wave with different laser power is discussed and the simulation result shows that the full width at half maximum (FWHM) of a nanometer stripe is 115nm and the contrast is 2.5:1 with laser power 3.93mW; the FWHM is 0.8nm and the contrast is 27:1 with laser power 16mW, the optimal laser power; but with laser power increasing to 50mW, the nanometer structure forms multi-crests and the quality worsens quickly with increasing laser power.
基金Supported by the National Natural Science Foundation of China under Grant No 10705007, and the Doctorial Start-up Foundation of Liaoning Province under Grant No 20071067.
文摘The molecular dynamics (MD) method is used to simulate the interactions of energetic C20 clusters with the dense plasma targets within the framework of the linear Vlasov-Poisson theory. The influences of various clusters (H2, N2, C20 and C60 respectively) on stopping power are discussed. The simulation results show that the vicinage effects in the Coulomb explosion dynamics and the stopping power are strongly affected by the variations in the cluster speed and the plasma parameters. Coulomb explosions are found to proceed faster for higher speeds, lower plasma densities and higher electron temperatures. In addition, the cluster stopping power is strongly enhanced in the early stages of Coulomb explosions due to the vicinage effect, but this enhancement eventually diminishes, after the cluster constituent ions are sufficiently separated. For the large and heavy clusters, the stopping power ratio reaches much higher values in the early stage of Coulomb explosion owing to the constructive interferences in the vicinage effect.
基金Supported by the National Natural Science Foundation of China under Grand No 10664003.
文摘By using a pump-probe technique, the nascent rotational and vibrational state distributions of CsH are obtained in the Cs(6^2 D,7^2 D) plus H2 reaction. The nascent CsH molecules are found to populate the lowest two vibrational (v″ = 0 and 1) levels of the ground electronic state. By comparing the spectral intensities of the CsH action spectra with those of pertinent Cs atomic fluorescence excitation spectra, the relative reactivity with 1-12 is in an order of6^2D3/2 〉 6^2D5/2 〉 7^2D3/2 〉 7^2D5/2. The rotational temperatures are found to be slightly below the cell temperature. The relative fractions (〈fV〉, 〈fR〉, 〈fT〉) of average energy disposal are derived as (0.2,0.12,0.68), (0.2,0.12,0.68), (0.07,0.04,0.89) and (0.07,0.04,0.89) for the 6^2D3/2, 6^2D5/2, 7^2D3/2 and 7^2D5/2, respectively. The major available energy is released as translation. These results support that the reaction mechanism of Cs(6^2 D,7^2 D) plus 112 is primarily a eollinear abstraction and not an insertion.
基金Supported by the National Basic Research Program of China under Grant No 2005CB724500, the National Natural Science Foundation of China under No 140874009, and the Open Research Found of State Key Laboratory of Precision Spectroscopy (East China Normal University).
文摘The quantum phase transition from the Mott insulator to the superfluid phases of the bosonic atoms trapped in an optical lattice, in which the on-site interaction carl be tuned by a Feshbach resonance, is investigated by a variational approach within mean-field theory. We derive an extended Bos^Hubbard model to describe this ultracold atomic system. By theoretical calculation and analysis, the phase diagram is shown clearly, and we find an exciting and novel phenomenon that is the appearance of the Mort insulator-sea (MI-sea). Meanwhile, the experimental feasibility of observing the MI-sea is discussed by analyzing the published data related to the Fashbaeh resonance at present. Finally, the potential application of the MI-sea for quantum information processing and quantum computation is also discussed in detail
基金Supported by the National Natural Science Foundation of China under Grant No 10774054, the National Science Fund for Distinguished Young Scholars under Grant No 60925021, and the National Basic Research Program of China under Grant No 2006CB806006.
文摘We investigate the momentum and energy correlations between the two electrons from nonsequential double ionization (NSDI) of helium by strong two-color pulses with the classical three-dimensional ensemble model. The correlated momentum distribution in the direction parallel to the laser field exhibits an arc-like structure and the sum-energy spectrum shows a sharp peak for the NSDI of helium in the two-color fields. Back analysis reveals that the narrow time interval during which recollisions occur, the low returning energy and the short time delay between recollision and double ionization lead to the novel momentum and energy correlations.
文摘We present a simple scheme for the probabilistic generation of the $n$-qubit W state of three-level systems in cavity quantum electrodynamics. Once the W state is prepared, it will be insensitive to the spontaneous emission of atoms due to the fact that only the two degenerate ground states of the three-level atoms are involved. With time evolution of the system, the success probability and the experimental feasibility are also discussed.
基金Supported by the National Basic Research Program of China under Grant Nos 2005CB724505 and 2010CB832805, the National Natural Science Foundation of China under Grant No 10774160, and Wuhan National Laboratory for Optoelectronics under Grant No P080001.
文摘We demonstrate an experimental observation of coherent population trapping-Ramsey interference in cold 87Rb atoms by employing the time-domain separated oscillatory fields' method. The interference fringe with line width of 80 Hz is obtained. We propose a novel method to measure the cold atom number. The measurement is insensitive to the pump beam intensity, the single photon detuning and even the initial state population. We use this method to normalize the interference signal and to improve the signal-to-noise ratio significantly.
基金Supported by the National Basic Research Program of China under Grant No 2005CB724500, the National Natural Science Foundation of China under No 10874009, and Open Research Found of State Key Laboratory of Precision Spectroscopy (East China Normal University).
文摘We report on the phenomena of the periodic spontaneous collapse and revival in the dynamics of an atomic beam interacting with a single-mode and coherent-state light field. Conventional collapse and revival by Eberly et al. [Phys. Rev. Lett. 44(1980)1323 ] are presented in the case of the evolution with time of the population inversion. Here, we study the evolution with coupling strength of population inversion. We define the collapse and revival coupling strengths as characteristic parameters to describe the above collapse and revival. Furthermore, we present the analytic formulas for the population inversion, the collapse and revival coupling strengths.
基金Supported by the National Natural Science Foundation of China under Grant No 10974151, the New Century Excellent Talent Project (NCET) of the Ministry of Education of China under Grant No 08-0431, the Cross-Disciplinary Project of Xi'an Jiaotong University under Grant No 2009xjtujc08.
文摘We illustrate our experimental observation of coexisting the controllable spatial splitting and intensity suppression of four-wave mixing (FWM) beam in a V-type three-level atomic system. The peak number and separation distance of the FWM beam are controlled by the intensities and frequencies of the laser beams, as well as atomic density.