Three different methods are used to manipulate and control phthalocyanine based single molecular rotors on Au (111) surface: (1) changing the molecular structure to alter the rotation potential; (2) using the t...Three different methods are used to manipulate and control phthalocyanine based single molecular rotors on Au (111) surface: (1) changing the molecular structure to alter the rotation potential; (2) using the tunnelling current of the scanning tunnelling microscope (STM) to change the thermal equilibrium of the molecular rotor; (3) artificial manipulation of the molecular rotor to switch the rotation on or off by an STM tip. Furthermore, a molecular 'gear wheel' is successfully achieved with two neighbouring molecules.展开更多
The hierarchical assemblies of precise nanoparticles(NPs)have created materials with emergent properties and functionalities.However,the complex assemblies remain unclear at a precise scale.Here,we show the hierarchic...The hierarchical assemblies of precise nanoparticles(NPs)have created materials with emergent properties and functionalities.However,the complex assemblies remain unclear at a precise scale.Here,we show the hierarchical self-assembly of atomically precise gold nanoclusters(Au NCs)with molecular rotor-based ligands(MRL),featuring a double-layer surface.Compared to two other types of monolayer-protected(MLP)Au NCs,the significantly reduced surface density for MRL Au NCs profoundly influences their assembly behavior within the lattice.Furthermore,the long length of rotor-based ligands and the rotational freedom of the phenyl-rings of rotor-based ligands also facilitate the assembly of NCs.Our works elucidate the hierarchical assembly on a precise scale,suggesting that the rotor-based ligand’s strategy offers promising potential for designing well-defined and more complex structures in supercrystals.展开更多
A new bromethyl-substituted molecular rotor, [Cu(dabcoCH2Br)(H2O)Br3] (dabcoCH2Br+=1-(2-bromethyl)-1,4-diazoniabi- cyclo[2.2.2]octane cation), which belongs to a family of balomethyl-substituted molecular rot...A new bromethyl-substituted molecular rotor, [Cu(dabcoCH2Br)(H2O)Br3] (dabcoCH2Br+=1-(2-bromethyl)-1,4-diazoniabi- cyclo[2.2.2]octane cation), which belongs to a family of balomethyl-substituted molecular rotors, was synthesized and struc- turally characterized. The reversible phase transition at ca. 250 K was well established for this molecular rotor by thermal analyses, variable-temperature X-ray diffraction, and variable temperature dielectric measurements. The order-disorder trans- formation of the rotator part (dabco moiety) causes ferroelastic phase transition with an Aizu notation of mmmF2/m from high- temperature orthorhombic phase (Pbnm) to low-temperature monoclinic phase (P21/n). More important, in reference to the density functional theory calculations and structural analyses, the key factors to tune the phase transition behaviors were dis- cussed in detail for this family of halomethyl-substituted molecular rotors.展开更多
As an extended model of conventional molecular rotors,a conceived construction of novel crystalline molecular rotor that simultaneously contains two discrete polar rotators is presented here.The supramolecular self-as...As an extended model of conventional molecular rotors,a conceived construction of novel crystalline molecular rotor that simultaneously contains two discrete polar rotators is presented here.The supramolecular self-assembly of 18-crown-6 host and two rotator-containing ion-pair guests affords a three-in-one cocrystal,(2-NH_(3)-iBuOH)(18-crown-6)[ZnBr_(3)(H_(2)O)],in which the hydroxyl group and aqua ligand both function as ultrasmall polar rotators.On the basis of the variable-temperature single-crystal X-ray diffraction,variable-temperature/frequency dielectric response,density functional theory calculations,and molecular dynamics simulations,it is found that such dual polar rotators experience a gradually enhanced rotation with increasing temperature,and more importantly,could be controlled by a reversible polar-to-polar structural phase transition,i.e.,from a“single-(polar rotator)”state at low-temperature phase to a“mixed-dual-(polar rotator)”state in the vicinity of transition,and to an unusual“synchronized-dual-(polar rotator)”state at high-temperature phase.展开更多
We describe here a class of unconventional ion transporters,molecular rotors that transport ions through a rotating function rather than via traditional carrier or channel mechanisms.Mimicking macroscopic rotors,these...We describe here a class of unconventional ion transporters,molecular rotors that transport ions through a rotating function rather than via traditional carrier or channel mechanisms.Mimicking macroscopic rotors,these molecular rotors consist of three modularly tunable components,i.e.,a membrane-anchoring stator,a crown ether-containing rotator for ion binding and transport,and a triple bond-based axle that allows the rotator to freely rotate around the stator in the lipid membrane.Lipid bilayer experiments reveal the generally high ability of all molecular rotors in promoting the highly efficient transmembrane K^(+)flux(EC50 values=0.49-1.37 mol%relative to lipid).While molecular rotors differing only in the ion-binding unit exhibit similar ion transport activities,those differing in the rotator’s length display activity differences by up to 174%.展开更多
Fluorescence liftime imaging (FLIM) of modified hydrophobic bodipy dyes that act as fluorescent molecular rotors shows that the fluorescence lifetime of these probes is a function of the microviscosity of their envi...Fluorescence liftime imaging (FLIM) of modified hydrophobic bodipy dyes that act as fluorescent molecular rotors shows that the fluorescence lifetime of these probes is a function of the microviscosity of their environment. Incubating cells with these dyes, we find a punctate and continuous distribution of the dye in cells. The viscosity value obtained in what appears to be endocytotic vesicles in living cells is around 100 times higher than that of water and of cellular cytoplasm.Time-resolved fluorescence anisotropy measurements also yield rotational correlation times consistent with large microviscosity values. In this way, we successfully develop a practical and versatile approach to map the microviscosity in cells based on imaging fluorescent molecular rotors.展开更多
The orientation switching of a single azobenzene molecule on Au(111)surface excited by tunneling electrons and/or photons has been demonstrated in recent experiments.Here we investigate the rotation behavior of this m...The orientation switching of a single azobenzene molecule on Au(111)surface excited by tunneling electrons and/or photons has been demonstrated in recent experiments.Here we investigate the rotation behavior of this molecular rotor by first-principles density functional theory(DFT)calculation.The anchor phenyl ring prefers adsorption on top of the fcc hollow site,simulated by a benzene molecule on close packed atomic surface.The adsorption energy for an azobenzene molecule on Au(111)surface is calculated to be about 1.76 eV.The rotational energy profile has been mapped with one of the phenyl rings pivots around the fcc hollow site,illustrating a potential barrier about 50 meV.The results are consistent with experimental observations and valuable for exploring a broad spectrum of molecules on this noble metal surface.展开更多
粘度对细胞微环境的维持非常重要。检测细胞内的粘度一般采用分子转子,而目前大多数的分子转子发射波长较短,不利于生物成像,为此我们设计了基于扭转分子内电荷转移(TICT)机理,通过共轭双键连接吸电子基和给电子基的红光发射的分子转子2...粘度对细胞微环境的维持非常重要。检测细胞内的粘度一般采用分子转子,而目前大多数的分子转子发射波长较短,不利于生物成像,为此我们设计了基于扭转分子内电荷转移(TICT)机理,通过共轭双键连接吸电子基和给电子基的红光发射的分子转子2-(2-(4-氨基苯乙烯基)-4-H-吡喃-4-亚基)-丙二腈(DCM-NH_2)。DCM-NH_2的最大发射波长为631 nm,属于远红光,能有效减少生物背景,提高成像信噪比。该探针对粘度有很好的响应,具有非常宽的线性响应范围(0.6~458.6 c P),同时也具有较高的灵敏度。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60771037 and 10774176)the National Basic Research Program of China (Grant No. 2007CB936802)
文摘Three different methods are used to manipulate and control phthalocyanine based single molecular rotors on Au (111) surface: (1) changing the molecular structure to alter the rotation potential; (2) using the tunnelling current of the scanning tunnelling microscope (STM) to change the thermal equilibrium of the molecular rotor; (3) artificial manipulation of the molecular rotor to switch the rotation on or off by an STM tip. Furthermore, a molecular 'gear wheel' is successfully achieved with two neighbouring molecules.
基金supported by the National Key R&D Program of China(No.2023YFC3404200)the National Natural Science Foundation of China(Nos.21974147,22325406)+1 种基金the 2022 Shanghai“Science and Technology Innovation Action Plan”Fundamental Research Project,China(No.22JC1401203)the Science Foundation of the Shanghai Municipal Science and Technology Commission,China(No.21dz2210100).
文摘The hierarchical assemblies of precise nanoparticles(NPs)have created materials with emergent properties and functionalities.However,the complex assemblies remain unclear at a precise scale.Here,we show the hierarchical self-assembly of atomically precise gold nanoclusters(Au NCs)with molecular rotor-based ligands(MRL),featuring a double-layer surface.Compared to two other types of monolayer-protected(MLP)Au NCs,the significantly reduced surface density for MRL Au NCs profoundly influences their assembly behavior within the lattice.Furthermore,the long length of rotor-based ligands and the rotational freedom of the phenyl-rings of rotor-based ligands also facilitate the assembly of NCs.Our works elucidate the hierarchical assembly on a precise scale,suggesting that the rotor-based ligand’s strategy offers promising potential for designing well-defined and more complex structures in supercrystals.
基金supported by the National Natural Science Foundation of China(21290173,21301198)the National Basic Research Program of China(2012CB821706)the Natural Science Foundation of Guangdong(S2012030006240)
文摘A new bromethyl-substituted molecular rotor, [Cu(dabcoCH2Br)(H2O)Br3] (dabcoCH2Br+=1-(2-bromethyl)-1,4-diazoniabi- cyclo[2.2.2]octane cation), which belongs to a family of balomethyl-substituted molecular rotors, was synthesized and struc- turally characterized. The reversible phase transition at ca. 250 K was well established for this molecular rotor by thermal analyses, variable-temperature X-ray diffraction, and variable temperature dielectric measurements. The order-disorder trans- formation of the rotator part (dabco moiety) causes ferroelastic phase transition with an Aizu notation of mmmF2/m from high- temperature orthorhombic phase (Pbnm) to low-temperature monoclinic phase (P21/n). More important, in reference to the density functional theory calculations and structural analyses, the key factors to tune the phase transition behaviors were dis- cussed in detail for this family of halomethyl-substituted molecular rotors.
基金supported by the National Natural Science Foundation of China(Nos.21971091,22071273,and 21821003)the Natural Science Foundation of Jiangxi Province(Nos.20192ACB20013,jxsq2018106041).
文摘As an extended model of conventional molecular rotors,a conceived construction of novel crystalline molecular rotor that simultaneously contains two discrete polar rotators is presented here.The supramolecular self-assembly of 18-crown-6 host and two rotator-containing ion-pair guests affords a three-in-one cocrystal,(2-NH_(3)-iBuOH)(18-crown-6)[ZnBr_(3)(H_(2)O)],in which the hydroxyl group and aqua ligand both function as ultrasmall polar rotators.On the basis of the variable-temperature single-crystal X-ray diffraction,variable-temperature/frequency dielectric response,density functional theory calculations,and molecular dynamics simulations,it is found that such dual polar rotators experience a gradually enhanced rotation with increasing temperature,and more importantly,could be controlled by a reversible polar-to-polar structural phase transition,i.e.,from a“single-(polar rotator)”state at low-temperature phase to a“mixed-dual-(polar rotator)”state in the vicinity of transition,and to an unusual“synchronized-dual-(polar rotator)”state at high-temperature phase.
基金This work was supported by Northwestern Poly-technical University.
文摘We describe here a class of unconventional ion transporters,molecular rotors that transport ions through a rotating function rather than via traditional carrier or channel mechanisms.Mimicking macroscopic rotors,these molecular rotors consist of three modularly tunable components,i.e.,a membrane-anchoring stator,a crown ether-containing rotator for ion binding and transport,and a triple bond-based axle that allows the rotator to freely rotate around the stator in the lipid membrane.Lipid bilayer experiments reveal the generally high ability of all molecular rotors in promoting the highly efficient transmembrane K^(+)flux(EC50 values=0.49-1.37 mol%relative to lipid).While molecular rotors differing only in the ion-binding unit exhibit similar ion transport activities,those differing in the rotator’s length display activity differences by up to 174%.
文摘Fluorescence liftime imaging (FLIM) of modified hydrophobic bodipy dyes that act as fluorescent molecular rotors shows that the fluorescence lifetime of these probes is a function of the microviscosity of their environment. Incubating cells with these dyes, we find a punctate and continuous distribution of the dye in cells. The viscosity value obtained in what appears to be endocytotic vesicles in living cells is around 100 times higher than that of water and of cellular cytoplasm.Time-resolved fluorescence anisotropy measurements also yield rotational correlation times consistent with large microviscosity values. In this way, we successfully develop a practical and versatile approach to map the microviscosity in cells based on imaging fluorescent molecular rotors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21961142021,11774395,91753136,and 11727902)the Beijing Natural Science Foundation,China(Grant No.4181003)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB30201000 and XDB28000000).
文摘The orientation switching of a single azobenzene molecule on Au(111)surface excited by tunneling electrons and/or photons has been demonstrated in recent experiments.Here we investigate the rotation behavior of this molecular rotor by first-principles density functional theory(DFT)calculation.The anchor phenyl ring prefers adsorption on top of the fcc hollow site,simulated by a benzene molecule on close packed atomic surface.The adsorption energy for an azobenzene molecule on Au(111)surface is calculated to be about 1.76 eV.The rotational energy profile has been mapped with one of the phenyl rings pivots around the fcc hollow site,illustrating a potential barrier about 50 meV.The results are consistent with experimental observations and valuable for exploring a broad spectrum of molecules on this noble metal surface.
文摘粘度对细胞微环境的维持非常重要。检测细胞内的粘度一般采用分子转子,而目前大多数的分子转子发射波长较短,不利于生物成像,为此我们设计了基于扭转分子内电荷转移(TICT)机理,通过共轭双键连接吸电子基和给电子基的红光发射的分子转子2-(2-(4-氨基苯乙烯基)-4-H-吡喃-4-亚基)-丙二腈(DCM-NH_2)。DCM-NH_2的最大发射波长为631 nm,属于远红光,能有效减少生物背景,提高成像信噪比。该探针对粘度有很好的响应,具有非常宽的线性响应范围(0.6~458.6 c P),同时也具有较高的灵敏度。