Currently,most two-dimensional(2D)materials that are of interest to emergent applications have focused on van der Waals–layered materials(VLMs)because of the ease with which the layers can be separated(e.g.,graphene)...Currently,most two-dimensional(2D)materials that are of interest to emergent applications have focused on van der Waals–layered materials(VLMs)because of the ease with which the layers can be separated(e.g.,graphene).Strong interlayer-bonding-layered materials(SLMs)in general have not been thoroughly explored,and one of the most critical present issues is the huge challenge of their preparation,although their physicochemical proper-ty transformation should be richer than VLMs and deserves greater attention.MAX phases are a classi-cal kind of SLM.展开更多
基金This research was supported by the National Natural Science Foundation of China(21673161 and 21473124)the Sino-German Center for Research Promotion(1400)STEM characterization was conducted at the Center for Nanophase Materials Sciences,which is a DOE Office of Science User Facility.Work at Jilin University is supported by the Recruitment Program of Global Youth Experts in China and National Natural Science Founda-tion of China(11404131 and 11674121).
文摘Currently,most two-dimensional(2D)materials that are of interest to emergent applications have focused on van der Waals–layered materials(VLMs)because of the ease with which the layers can be separated(e.g.,graphene).Strong interlayer-bonding-layered materials(SLMs)in general have not been thoroughly explored,and one of the most critical present issues is the huge challenge of their preparation,although their physicochemical proper-ty transformation should be richer than VLMs and deserves greater attention.MAX phases are a classi-cal kind of SLM.