In this review we describe a family of organic-based host frameworks which can accommodate guest molecules. The aim of the study is to test the adjustability of this class of mimic structures that may lead to new inte...In this review we describe a family of organic-based host frameworks which can accommodate guest molecules. The aim of the study is to test the adjustability of this class of mimic structures that may lead to new interesting functions. Emphasis of our research is placed upon four aspects: 1) thermal properties, 2) surface photochemistry, 3) fullerene adsorption, and 4) guest inclusion. It is envisioned that such approach of nanoporous molecular networks might be developed into a new family of useful soft frameworks for studies toward shape-selective catalysis, molecular recognition, self-assembly, and host-guest supramolecular chemistry.展开更多
During the past few years,regulation and controlling of the two-dimension(2D) self-assembled supramolecular structure on surface have drawn increasing attention in nanoscience and technology.External stimuli have be...During the past few years,regulation and controlling of the two-dimension(2D) self-assembled supramolecular structure on surface have drawn increasing attention in nanoscience and technology.External stimuli have been widely used to regulate these 2D nanostructures.Among various external stimuli approaches,photo-regulation as one of the most outstanding means of regulation has been extensively studied because different wave bands can lead to molecular conformation variation and new bonds to gain new molecules.In this review,the photo-regulated self-assembled structure on solid surface as well as the photo-reactions of different molecules substituted with photo-sensitive groups are introduced to give us an insight into on-surface photochemistry,which plays an important role on the nano-devices fabrication.Notably,these photo-sensitive behaviors as well as the formed structures on surface were probed at sub-molecule level by unique scanning tunneling microscopy(STM) technique.展开更多
Aromatic carboxylic acid self-assembly has been a hot research field for many scientists due to its strong coordination ability and flexible coordination mode.The hydrogen bond formed between aromatic carboxylic acids...Aromatic carboxylic acid self-assembly has been a hot research field for many scientists due to its strong coordination ability and flexible coordination mode.The hydrogen bond formed between aromatic carboxylic acids is a strong intermolecular force and has directionality and saturation,which plays a very important role in the self-assembly and regulation of aromatic carboxylic acids.In this review,we introduce surface organization formed by aromatic carboxylic acids with the aid of scanning tunneling microscopy(STM).These two-dimensional structures include molecular templates,host-guest systems,and photo-isomerization structures.We also emphasize the thermodynamics and dynamics,which are important research topics of current and future study.展开更多
基金Financial support from the National Natural Science Foundation of China (Grant Nos. 20473097 and 20573116)the National Key Project for Basic Research (Grant Nos. 2007CB936503 and 2007CB936802)
文摘In this review we describe a family of organic-based host frameworks which can accommodate guest molecules. The aim of the study is to test the adjustability of this class of mimic structures that may lead to new interesting functions. Emphasis of our research is placed upon four aspects: 1) thermal properties, 2) surface photochemistry, 3) fullerene adsorption, and 4) guest inclusion. It is envisioned that such approach of nanoporous molecular networks might be developed into a new family of useful soft frameworks for studies toward shape-selective catalysis, molecular recognition, self-assembly, and host-guest supramolecular chemistry.
基金The financial support from the National Key Basic Research Program of China(Nos.2016YFA0200700,2013CB934203)the National Natural Science Foundation of China(No.21472029)
文摘During the past few years,regulation and controlling of the two-dimension(2D) self-assembled supramolecular structure on surface have drawn increasing attention in nanoscience and technology.External stimuli have been widely used to regulate these 2D nanostructures.Among various external stimuli approaches,photo-regulation as one of the most outstanding means of regulation has been extensively studied because different wave bands can lead to molecular conformation variation and new bonds to gain new molecules.In this review,the photo-regulated self-assembled structure on solid surface as well as the photo-reactions of different molecules substituted with photo-sensitive groups are introduced to give us an insight into on-surface photochemistry,which plays an important role on the nano-devices fabrication.Notably,these photo-sensitive behaviors as well as the formed structures on surface were probed at sub-molecule level by unique scanning tunneling microscopy(STM) technique.
基金supported by the National Basic Research Program of China (No. 2016YFA0200700)the National Natural Science Foundation of China (Nos. 21773041 and 21472029)
文摘Aromatic carboxylic acid self-assembly has been a hot research field for many scientists due to its strong coordination ability and flexible coordination mode.The hydrogen bond formed between aromatic carboxylic acids is a strong intermolecular force and has directionality and saturation,which plays a very important role in the self-assembly and regulation of aromatic carboxylic acids.In this review,we introduce surface organization formed by aromatic carboxylic acids with the aid of scanning tunneling microscopy(STM).These two-dimensional structures include molecular templates,host-guest systems,and photo-isomerization structures.We also emphasize the thermodynamics and dynamics,which are important research topics of current and future study.