Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate ...Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.展开更多
Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynam...Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.展开更多
Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organi...Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organic-hybridized electrolyte designs,however,at the expense of cost and safety.Here,we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer.The as-formed composite interphase exhibits a molecularsieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix,which enables high rejection of hydrated Na^(+)ions while allowing fast dehydrated Na^(+)permeance.Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg^(-1) sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords Na_(2)MnFe(CN)_(6)//NaTi_(2)(PO_(4))_(3) full cells with an unprecedented cycling stability of 94.9%capacity retention after 200 cycles at 1 C.Combined with emerging electrolyte modifications,this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs.展开更多
Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition...Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.展开更多
Anion can be identified by pyromellitic imide-azacyclophane which is one of the host compounds.This article investigated the interaction between the host and organic pollution compounds.The host and other eight compou...Anion can be identified by pyromellitic imide-azacyclophane which is one of the host compounds.This article investigated the interaction between the host and organic pollution compounds.The host and other eight compounds were optimized by DFT(density functional theory) B3LYP/6-31G level and the energy of compounds was corrected using Boys-Bemardi method.On the basis of B3LYP/6-31G optimized geometries,the RDG function and sign(λ2(r))ρ(r) function values of space points were calculated,and color RDG isosurface map was drawn.3He chemical shift was calculated by the B3LYP/6-31G method.The results showed that the eight organic pollution molecules with the host one shaped stable configurations by hydrogen bonds,respectively.The stabilization energy of complexes 4 and 7 showed repulsion(steric effects) of cyclophane cage observably affecting the stability of the complexes.The location,intensity and the type of interaction in complex 1 were analyzed through color-filled RDG isosurface map.Aromaticity calculations showed that the weak interaction reduced the transverse induction ring current in the host rings,and deteriorated the aromaticity of compounds.展开更多
The intrinsic physical properties of the noble metal nanoparticles,which are highly sensitive to the nature of their local molecular environment,make such systems ideal for the detection of molecular recognition event...The intrinsic physical properties of the noble metal nanoparticles,which are highly sensitive to the nature of their local molecular environment,make such systems ideal for the detection of molecular recognition events.The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles.In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization.A brief discussion of the three common methods of functionalization:Electrostatic adsorption;Chemisorption;Affinity-based coordination is given.In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition.In the main section the various types of capping agents for molecular recognition;nucleic acid coatings,protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications.Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition.For the proteins the recognition properties of antibodies form the core of the section.With respect to the supramolecular systems the cyclodextrins,calix[n]arenes,dendrimers,crown ethers and the cucurbitales are treated in depth.Finally a short section deals with the possible toxicity of the nanoparticles,a concern in public health.展开更多
This study involves initial Hartree-Fock and Density Functional theory calculations onthe molecular recognition of the cyclodextrins. The α-cyclodextrin-acetophenone complexationsystem was investigated with PM3, HF/...This study involves initial Hartree-Fock and Density Functional theory calculations onthe molecular recognition of the cyclodextrins. The α-cyclodextrin-acetophenone complexationsystem was investigated with PM3, HF/3-21G* and B3LYP/3-21G* methods. The results indicatedthat the inclusion orientation in which the acetyl group of the acetophenone points towards thesecondary hydroxyls of the a-cyclodextrin was preferable in energy. The steric effect wassupposed as the physical reason of such a behavior Hence, the simple rule the anti-parallelarrangement of the dipoles of the host and guest molecules in the cyclodextrin complexqtion is notgenerally applicable.展开更多
Theoretical study on coordinates between crown ethers and aniline as well as monosaccharides is performed by AM1, MNDO and PM3 methods. It is indicated that crown ethers possess ability to recognize polar guests espec...Theoretical study on coordinates between crown ethers and aniline as well as monosaccharides is performed by AM1, MNDO and PM3 methods. It is indicated that crown ethers possess ability to recognize polar guests especially ionic guests and monosaccharides. Electronic spectra of coordinates are computed by the INDO/SCI method. The reason of the blue-shift for UV absorption of complexes relative to that of hosts is discussed and electronic transition is theoretic- cally assigned.展开更多
A novel and effective approach was developed to synthesize monodisperse hollow molecularly imprinted polymers (MHMIPs) with unfunctionalized SiO2 spheres in a mixture of toluene and CH3CN. The factors that affected ...A novel and effective approach was developed to synthesize monodisperse hollow molecularly imprinted polymers (MHMIPs) with unfunctionalized SiO2 spheres in a mixture of toluene and CH3CN. The factors that affected the synthesis of MHMIPs were systematically investigated. It was determined that a suitable ratio of toluene to CH3CN and the use of a functional monomer that can generate double H-bonding interactions were the critical factors to obtain MHMIPs with high uniformity and rnonodispersion. The obtained MHMIPs exhibited a fast adsorption rate and high adsorption capacity (270 μmol/g) for bisphenol A. As the shell thickness increased from 90 nm to 130 nm, the binding capacity of the imprinted shells decreased gradually. The relative selectivity coefficients of MHMIPs for tetra-brornobisphenol A (TBBPA), phenol and p-tert-butylphenol (PTBP) were calculated as 1.53, 1.83 and 1.90, respectively. These findings indicate that MHMIPs have good adsorption performances and suggest applications in the selective removal or sensitive analysis of bisphenol A.展开更多
A functional amphiphile, N^6 -myristoyl-9-[ 8-( 1-trimethylamino) octyl ] adenine bromide (MTOAB), was used to form coliposomes of phosphatidyleholine(PC), PC/thymine, and PC/TOTB using sonication . The morpholo...A functional amphiphile, N^6 -myristoyl-9-[ 8-( 1-trimethylamino) octyl ] adenine bromide (MTOAB), was used to form coliposomes of phosphatidyleholine(PC), PC/thymine, and PC/TOTB using sonication . The morphologies of the coliposomes were characterized using TEM (transmission electron microscopy). The UV-Vis spectroscopic behavior of PC/MTOAB/thymine (molar ratio = 5: 1: 1 ) and PC/MTOAB/TOTB (molar ratio = 5: 1: 1 ) of coliposomal solutions showed that as a result of base pairing, absorption intensity showed a decrease at 263 nm with increase of time. The decrease of absorption intensity is ascribed to the hypochromic effect, which is because of the formation of hydrogen bonds between adenine and thymine in the coliposomes. The same effect was also observed for the mixture of aqueous PC/MTOAB liposomes and PC/TOTB liposomes after fusion, whereas the nocomplementary coliposomcs formed from PC/MTOAB and PC/TOTB did not show these spectroscopic changes. The molecular recognition through hydrogen interactions between adenine and thymine is very slow because of the possible occurrence of molecular lateral diffusion and exchange of amphiphile before recognition progresses in coliposomes. These results provide useful information for the design of supramolecular devices such as vesicles and liposomes,which can be used to mimic primitive recognition processes observed in biological systems.展开更多
Assembly of carbohydrates on nickel (Ⅱ) center by utilizing N-glycosidicbond formation with a branched amine: tris(2-aminoethyl)amine (tren), an unprecedentedchiral inversion around the metal center (Co or Mn) induce...Assembly of carbohydrates on nickel (Ⅱ) center by utilizing N-glycosidicbond formation with a branched amine: tris(2-aminoethyl)amine (tren), an unprecedentedchiral inversion around the metal center (Co or Mn) induced by an interaction betweensugars and sulfate anions, peroxo-bridged dinuclear cobalt (Ⅲ) complex containing N-glycoside ligands from tren and D-glucose and its reversible dioxygen binding property,and novel trimanganese complexes with a linear Mn_3 (Ⅱ, Ⅲ, Ⅱ) assemblage bridged bycarbohydrates are described.展开更多
β-Cyclodextrin (β-CD) and its cross-linked polymer (β-CDP) were known as the mimetic models. Metalloporphyrin had been widely used in the enzymatic method of analysis and molecular recognition. In present work, it ...β-Cyclodextrin (β-CD) and its cross-linked polymer (β-CDP) were known as the mimetic models. Metalloporphyrin had been widely used in the enzymatic method of analysis and molecular recognition. In present work, it was investigation that supramolecular recognition for halogenated phenols, three crosols, three nitrophenols and three aminophenols, served respectively as the substrate of the mimetic receptor, iron-5, 10, 15, 20-tetrakis (sulforphenyl)-21H, 23H-porphine (FeTPPS) or FeTPPS-β-CDP. Supramolecular complex, FeTPPS-β-CDP with function of mult i-recognition and induced-fit, was a advanced kind of mimetic peroxidase; Methyl phenol or polyphenol was the substitute of chlorophenic acid, while aminophenols and other phenols were suggested not to be utilized to enzymatic assay of H2O2. Being a mimetic enzyme mimicking the space structure of overall proteinase, beaimed by immobilized mimetic enzyme with a large number of β-CD interior cavities, chlorophenol was identified optimal substrate in the system tested.展开更多
In the beginning everything was explained in Biochemistry in terms of hydrogen-bonds (HB). Then, the devastating blow, known as the HB-inventory argument came;hydrogen bonding with water molecules compete with intramo...In the beginning everything was explained in Biochemistry in terms of hydrogen-bonds (HB). Then, the devastating blow, known as the HB-inventory argument came;hydrogen bonding with water molecules compete with intramolecular hydrogen-bonds. As a result, the HBs paradigm fell from grace. The void created was immediately filled by Kauzmann’s idea of hydrophobic (HφO) effect which reigned supreme in biochemical literature for over 50 years (1960-2010). Cracks in the HB-inventory argument on one hand, and doubts about the adequacy of Kauzmann’s model for the HφO effect, have led to a comeback of the HBs, along with a host of new hydrophilic (HφI) effects. The HφO effects lost much of its power - which it never really had - in explaining protein folding and protein-protein association. Instead, the more powerful and richer repertoire of HφI effects took over the reins. The interactions also offered simple and straightforward answers to the problems of protein folding, and protein-protein association.展开更多
Cerium (III) tetraphenylporphyrin nitrate Ce(TPP)NO3 was synthesized by using meso- tetraphenylporphyrin (TPP) and Ce(NO3).6H20 in mixture solution of CHC13 and C2HsOH (V:V=1:1). The complex was characteri...Cerium (III) tetraphenylporphyrin nitrate Ce(TPP)NO3 was synthesized by using meso- tetraphenylporphyrin (TPP) and Ce(NO3).6H20 in mixture solution of CHC13 and C2HsOH (V:V=1:1). The complex was characterized by UV-Vis, FT-IR, conventional fluorescence, MALDI-TOF-MS, and ^1H NMR spectral techniques. The structure of complex was proposed viaSpectral analyses, in which tetraphenylporphyrin was coordinated to a cerium ion in a tetradentate fashion, while one nitrate was coordinated to the same cerium ion. After bubbling NO to the solution of Ce(TPP)NO3 in CH2Cl2, spectral analyses suggested that Ce(TPP)NO3 could interact with NO to form a novel complex of Ce(TPP)(NO)NO3, and NO was coordinated to the center cerium ion. When nitrogen was poured into the Ce(TPP)(NO)(NO3) solution, the complex could be reduced to Ce(TPP)NO3.展开更多
In this study, the chiral separation mechanisms of Dansyl amino acids, including Dansyl-Leucine (Dans-Leu), Dansyl-Norleucine (Dans-Nor), Dansyl-Tryptophan (Dans-Trp) and Dansyl-Phenylalanine (Dans-Phe) binding to pol...In this study, the chiral separation mechanisms of Dansyl amino acids, including Dansyl-Leucine (Dans-Leu), Dansyl-Norleucine (Dans-Nor), Dansyl-Tryptophan (Dans-Trp) and Dansyl-Phenylalanine (Dans-Phe) binding to poly-sodium </span><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">N</span></i><i><span style="font-family:Verdana;"></i></span></i><span style="font-family:Verdana;">-undecanoyl-(L)-Leucylvalinate, poly (SULV), were investigated using molecular dynamics simulations. Micellar electrokinetic chromatography (MEKC) has previously shown that when separating the enantiomers of these aforementioned Dansyl amino acids, the L-enantiomers bind stronger to poly (SULV) than the D-enantiomers. This study aims to investigate the molecular interactions that govern chiral recognition in these systems using computational methods. This study reveals that the computationally-calculated binding free energy values for Dansyl enantiomers binding to poly (SULV) are in agreement with the enantiomeric order produced in experimental MEKC studies. The L-enantiomers of Dans-Leu, Dans-Nor, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly (SULV) yielded binding free energy values of </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">21.8938, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">22.1763, </span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">21.3329 </span><span style="font-family:Verdana;">and </span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">13.3349 kJ</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">mol</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, respectively. The D-enantiomers of Dans-Leu, Dans-Nor</span><span style="font-family:Verdana;">, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly (SULV) yielded binding free energy values of </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">14.5811, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">15.9457, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">13.6408, and </span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">12.0959</span><b> </b><span style="font-family:Verdana;">kJ</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">mol</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, respectively. Furthermore, hydrogen bonding analyses w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> used to investigate and elucidate the molecular interactions that govern chiral recognition in these molecular systems.展开更多
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode...Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle.展开更多
A novel fluorescent ionophore derived from calix[4]arene and pyrazoline was designed and synthesized.Its molecular structure was confirmed by ^1H NMR and element analysis.The resulting material shows specific fluoresc...A novel fluorescent ionophore derived from calix[4]arene and pyrazoline was designed and synthesized.Its molecular structure was confirmed by ^1H NMR and element analysis.The resulting material shows specific fluorescent behavior toward the Zn^2+ion among the other divalent metal ions,such as Co^2+,Ni^2+,Cu^2+.The primary results indicate this ionophore material is a potential material for developing efficient fluorescent Zn^2+ chemosensors.展开更多
A novel immunosensor based on surface plasmon resonance(SPR) has been developed for the recognition of antigen. The sensor was designed on the basis of the fixed angle of incidence and measuring the reflected intens...A novel immunosensor based on surface plasmon resonance(SPR) has been developed for the recognition of antigen. The sensor was designed on the basis of the fixed angle of incidence and measuring the reflected intensities in a wavelength range of 430--750 nm in real-time. An ultra-bright white light-emitting diode(LED) was used as the light source. Molecular self-assembling in solution was used to form the sensing membrane on gold substrate. It has been seen that the sensitivity of the SPR sensor with 3-mercaptopropionic acid(MPA)/protein A(SPA) sensing membrane is considerably higher than that with MPA or SPA modified sensing membrane. The kinetic processes on the sensing membrane were studied. The human B factor(Bf), an activator of complement 3(C3), was recognized among the other antigens. This sensor can also be used for other antigen/antibody or adaptor/receptor recognition. Under optimized experimental conditions, the sensor has good selectivity, repeatability, and reversibility.展开更多
Molecular recognition in water,the biological solvent,always receives significant research focus in supramolecular chemistry.The mechanisms of molecular recognition in water is key to comprehending biological processe...Molecular recognition in water,the biological solvent,always receives significant research focus in supramolecular chemistry.The mechanisms of molecular recognition in water is key to comprehending biological processes at the molecular level.Over the past five decades,supramolecular chemists have developed a vast array of synthetic receptors with highly diverse structures and recognition properties.Among them,cyclophanes represent an important family of macrocyclic receptors that have been extensively explored.The aromatic moieties in cyclophanes not only facilitate chemical modifications to impart water solubility but also enable forming hydrophobic cavities for guest inclusion in aqueous environments.Pioneered by Koga et al.,who reported the first inclusion complex of cyclophanes in water and solid state,numerous water-soluble cyclophanes,including derivatives of blue box,calixarenes,resorcinarenes,pillararenes,octopusarenes,biphenarenes,coronarenes,and naphthotubes,etc.,have been synthesized and subjected to investigation of the recognition capabilities in aqueous solutions.This review provides an overview of cyclophane receptors designed to bind organic guests in water.We categorize them into two classes based on the modifications made to their hydrophobic cavities:those with“exo-functionalized hydrophobic cavities”and those with“endo-functionalized hydrophobic cavities”.We introduce their distinctive features and discuss strategies to enhance recognition affinity and selectivity.This review aims to inspire the development of novel synthetic receptors with intriguing properties and foster practical applications of cyclophanes.展开更多
基金supported by CNPC-CZU Innovation Alliancethe Research Start-Up Fund of Changzhou University.
文摘Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.
基金supported by the National Natural Science Foundation of China (Grant Nos.12164019,11991060,12088101,and U1930402)the Natural Science Foundation of Jiangxi Province of China (Grant No.20212BAB201017).
文摘Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.
基金supported by the National Key R&D Program of China(Grant No.2022YFB2402604)the National Natural Science Foundation of China(21975271,22209194)+3 种基金Shandong Natural Science Foundation(ZR2020ZD07,ZR2023YQ010 and ZR2021QB106)the Taishan Scholars of Shandong Province(No.ts201511063,tsqn202211277)the Shandong Energy Institute(SEI I202127)Qingdao New Energy Shandong Laboratory(QIBEBT/SEI/QNESLS202304).
文摘Aqueous sodium-ion batteries are known for poor rechargeability because of the competitive water decomposition reactions and the high electrode solubility.Improvements have been reported by saltconcentrated and organic-hybridized electrolyte designs,however,at the expense of cost and safety.Here,we report the prolonged cycling of ASIBs in routine dilute electrolytes by employing artificial electrode coatings consisting of NaX zeolite and NaOH-neutralized perfluorinated sulfonic polymer.The as-formed composite interphase exhibits a molecularsieving effect jointly played by zeolite channels and size-shrunken ionic domains in the polymer matrix,which enables high rejection of hydrated Na^(+)ions while allowing fast dehydrated Na^(+)permeance.Applying this coating to electrode surfaces expands the electrochemical window of a practically feasible 2 mol kg^(-1) sodium trifluoromethanesulfonate aqueous electrolyte to 2.70 V and affords Na_(2)MnFe(CN)_(6)//NaTi_(2)(PO_(4))_(3) full cells with an unprecedented cycling stability of 94.9%capacity retention after 200 cycles at 1 C.Combined with emerging electrolyte modifications,this molecular-sieving interphase brings amplified benefits in long-term operation of ASIBs.
基金supported by the National Natural Science Foundation of China(Grant Nos.52035009 and 51761135106)the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)+1 种基金the Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials(JDKJ2022-01)the“111”project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.
文摘Anion can be identified by pyromellitic imide-azacyclophane which is one of the host compounds.This article investigated the interaction between the host and organic pollution compounds.The host and other eight compounds were optimized by DFT(density functional theory) B3LYP/6-31G level and the energy of compounds was corrected using Boys-Bemardi method.On the basis of B3LYP/6-31G optimized geometries,the RDG function and sign(λ2(r))ρ(r) function values of space points were calculated,and color RDG isosurface map was drawn.3He chemical shift was calculated by the B3LYP/6-31G method.The results showed that the eight organic pollution molecules with the host one shaped stable configurations by hydrogen bonds,respectively.The stabilization energy of complexes 4 and 7 showed repulsion(steric effects) of cyclophane cage observably affecting the stability of the complexes.The location,intensity and the type of interaction in complex 1 were analyzed through color-filled RDG isosurface map.Aromaticity calculations showed that the weak interaction reduced the transverse induction ring current in the host rings,and deteriorated the aromaticity of compounds.
文摘The intrinsic physical properties of the noble metal nanoparticles,which are highly sensitive to the nature of their local molecular environment,make such systems ideal for the detection of molecular recognition events.The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles.In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization.A brief discussion of the three common methods of functionalization:Electrostatic adsorption;Chemisorption;Affinity-based coordination is given.In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition.In the main section the various types of capping agents for molecular recognition;nucleic acid coatings,protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications.Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition.For the proteins the recognition properties of antibodies form the core of the section.With respect to the supramolecular systems the cyclodextrins,calix[n]arenes,dendrimers,crown ethers and the cucurbitales are treated in depth.Finally a short section deals with the possible toxicity of the nanoparticles,a concern in public health.
文摘This study involves initial Hartree-Fock and Density Functional theory calculations onthe molecular recognition of the cyclodextrins. The α-cyclodextrin-acetophenone complexationsystem was investigated with PM3, HF/3-21G* and B3LYP/3-21G* methods. The results indicatedthat the inclusion orientation in which the acetyl group of the acetophenone points towards thesecondary hydroxyls of the a-cyclodextrin was preferable in energy. The steric effect wassupposed as the physical reason of such a behavior Hence, the simple rule the anti-parallelarrangement of the dipoles of the host and guest molecules in the cyclodextrin complexqtion is notgenerally applicable.
文摘Theoretical study on coordinates between crown ethers and aniline as well as monosaccharides is performed by AM1, MNDO and PM3 methods. It is indicated that crown ethers possess ability to recognize polar guests especially ionic guests and monosaccharides. Electronic spectra of coordinates are computed by the INDO/SCI method. The reason of the blue-shift for UV absorption of complexes relative to that of hosts is discussed and electronic transition is theoretic- cally assigned.
基金supported by the Common Wealth Scientific Foundation for Industry of Chinese Inspection and Quarantine (No.201210071)the Ministry of National Science and Technology of China
文摘A novel and effective approach was developed to synthesize monodisperse hollow molecularly imprinted polymers (MHMIPs) with unfunctionalized SiO2 spheres in a mixture of toluene and CH3CN. The factors that affected the synthesis of MHMIPs were systematically investigated. It was determined that a suitable ratio of toluene to CH3CN and the use of a functional monomer that can generate double H-bonding interactions were the critical factors to obtain MHMIPs with high uniformity and rnonodispersion. The obtained MHMIPs exhibited a fast adsorption rate and high adsorption capacity (270 μmol/g) for bisphenol A. As the shell thickness increased from 90 nm to 130 nm, the binding capacity of the imprinted shells decreased gradually. The relative selectivity coefficients of MHMIPs for tetra-brornobisphenol A (TBBPA), phenol and p-tert-butylphenol (PTBP) were calculated as 1.53, 1.83 and 1.90, respectively. These findings indicate that MHMIPs have good adsorption performances and suggest applications in the selective removal or sensitive analysis of bisphenol A.
基金Supported by the National Natural Science Foundation of China(Nos. 50473005 and 20274015).
文摘A functional amphiphile, N^6 -myristoyl-9-[ 8-( 1-trimethylamino) octyl ] adenine bromide (MTOAB), was used to form coliposomes of phosphatidyleholine(PC), PC/thymine, and PC/TOTB using sonication . The morphologies of the coliposomes were characterized using TEM (transmission electron microscopy). The UV-Vis spectroscopic behavior of PC/MTOAB/thymine (molar ratio = 5: 1: 1 ) and PC/MTOAB/TOTB (molar ratio = 5: 1: 1 ) of coliposomal solutions showed that as a result of base pairing, absorption intensity showed a decrease at 263 nm with increase of time. The decrease of absorption intensity is ascribed to the hypochromic effect, which is because of the formation of hydrogen bonds between adenine and thymine in the coliposomes. The same effect was also observed for the mixture of aqueous PC/MTOAB liposomes and PC/TOTB liposomes after fusion, whereas the nocomplementary coliposomcs formed from PC/MTOAB and PC/TOTB did not show these spectroscopic changes. The molecular recognition through hydrogen interactions between adenine and thymine is very slow because of the possible occurrence of molecular lateral diffusion and exchange of amphiphile before recognition progresses in coliposomes. These results provide useful information for the design of supramolecular devices such as vesicles and liposomes,which can be used to mimic primitive recognition processes observed in biological systems.
文摘Assembly of carbohydrates on nickel (Ⅱ) center by utilizing N-glycosidicbond formation with a branched amine: tris(2-aminoethyl)amine (tren), an unprecedentedchiral inversion around the metal center (Co or Mn) induced by an interaction betweensugars and sulfate anions, peroxo-bridged dinuclear cobalt (Ⅲ) complex containing N-glycoside ligands from tren and D-glucose and its reversible dioxygen binding property,and novel trimanganese complexes with a linear Mn_3 (Ⅱ, Ⅲ, Ⅱ) assemblage bridged bycarbohydrates are described.
基金the National Natural Science Foundation of China
文摘β-Cyclodextrin (β-CD) and its cross-linked polymer (β-CDP) were known as the mimetic models. Metalloporphyrin had been widely used in the enzymatic method of analysis and molecular recognition. In present work, it was investigation that supramolecular recognition for halogenated phenols, three crosols, three nitrophenols and three aminophenols, served respectively as the substrate of the mimetic receptor, iron-5, 10, 15, 20-tetrakis (sulforphenyl)-21H, 23H-porphine (FeTPPS) or FeTPPS-β-CDP. Supramolecular complex, FeTPPS-β-CDP with function of mult i-recognition and induced-fit, was a advanced kind of mimetic peroxidase; Methyl phenol or polyphenol was the substitute of chlorophenic acid, while aminophenols and other phenols were suggested not to be utilized to enzymatic assay of H2O2. Being a mimetic enzyme mimicking the space structure of overall proteinase, beaimed by immobilized mimetic enzyme with a large number of β-CD interior cavities, chlorophenol was identified optimal substrate in the system tested.
文摘In the beginning everything was explained in Biochemistry in terms of hydrogen-bonds (HB). Then, the devastating blow, known as the HB-inventory argument came;hydrogen bonding with water molecules compete with intramolecular hydrogen-bonds. As a result, the HBs paradigm fell from grace. The void created was immediately filled by Kauzmann’s idea of hydrophobic (HφO) effect which reigned supreme in biochemical literature for over 50 years (1960-2010). Cracks in the HB-inventory argument on one hand, and doubts about the adequacy of Kauzmann’s model for the HφO effect, have led to a comeback of the HBs, along with a host of new hydrophilic (HφI) effects. The HφO effects lost much of its power - which it never really had - in explaining protein folding and protein-protein association. Instead, the more powerful and richer repertoire of HφI effects took over the reins. The interactions also offered simple and straightforward answers to the problems of protein folding, and protein-protein association.
基金ACKNOWLEDGMENTS This work was supported by the "Western Light" Visiting Scholar Plan, the Program for New Century Excellent Talents in University (No.NCET-12-1017), the Program for Grassland Excellent Talents of Inner Mongolia Autonomous Region, the Inner Mengolia Science Technology Plan, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (No.NJYT-12-B13), the Natural Science Foundation of Inner Mongolia Autonomous Region (No.2011BS0601, China), the Inner Mongolia Talented People Development Fund, and Yongfeng Boyuan Industry Co., Ltd. Jiangxi Province, China.
文摘Cerium (III) tetraphenylporphyrin nitrate Ce(TPP)NO3 was synthesized by using meso- tetraphenylporphyrin (TPP) and Ce(NO3).6H20 in mixture solution of CHC13 and C2HsOH (V:V=1:1). The complex was characterized by UV-Vis, FT-IR, conventional fluorescence, MALDI-TOF-MS, and ^1H NMR spectral techniques. The structure of complex was proposed viaSpectral analyses, in which tetraphenylporphyrin was coordinated to a cerium ion in a tetradentate fashion, while one nitrate was coordinated to the same cerium ion. After bubbling NO to the solution of Ce(TPP)NO3 in CH2Cl2, spectral analyses suggested that Ce(TPP)NO3 could interact with NO to form a novel complex of Ce(TPP)(NO)NO3, and NO was coordinated to the center cerium ion. When nitrogen was poured into the Ce(TPP)(NO)(NO3) solution, the complex could be reduced to Ce(TPP)NO3.
文摘In this study, the chiral separation mechanisms of Dansyl amino acids, including Dansyl-Leucine (Dans-Leu), Dansyl-Norleucine (Dans-Nor), Dansyl-Tryptophan (Dans-Trp) and Dansyl-Phenylalanine (Dans-Phe) binding to poly-sodium </span><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">N</span></i><i><span style="font-family:Verdana;"></i></span></i><span style="font-family:Verdana;">-undecanoyl-(L)-Leucylvalinate, poly (SULV), were investigated using molecular dynamics simulations. Micellar electrokinetic chromatography (MEKC) has previously shown that when separating the enantiomers of these aforementioned Dansyl amino acids, the L-enantiomers bind stronger to poly (SULV) than the D-enantiomers. This study aims to investigate the molecular interactions that govern chiral recognition in these systems using computational methods. This study reveals that the computationally-calculated binding free energy values for Dansyl enantiomers binding to poly (SULV) are in agreement with the enantiomeric order produced in experimental MEKC studies. The L-enantiomers of Dans-Leu, Dans-Nor, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly (SULV) yielded binding free energy values of </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">21.8938, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">22.1763, </span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">21.3329 </span><span style="font-family:Verdana;">and </span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">13.3349 kJ</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">mol</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, respectively. The D-enantiomers of Dans-Leu, Dans-Nor</span><span style="font-family:Verdana;">, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly (SULV) yielded binding free energy values of </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">14.5811, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">15.9457, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">13.6408, and </span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">12.0959</span><b> </b><span style="font-family:Verdana;">kJ</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">mol</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, respectively. Furthermore, hydrogen bonding analyses w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> used to investigate and elucidate the molecular interactions that govern chiral recognition in these molecular systems.
基金National Research Foundation,Grant/Award Number:2022R1A2C1092273。
文摘Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle.
基金supported by the National Natural Science Foundation of China(No.20802033)NaturalScience Foundation of Jiangxi Province(No.2007GZC1552)Scientific Research Foundation of NanchangHangkong University(No.EA200802012).
文摘A novel fluorescent ionophore derived from calix[4]arene and pyrazoline was designed and synthesized.Its molecular structure was confirmed by ^1H NMR and element analysis.The resulting material shows specific fluorescent behavior toward the Zn^2+ion among the other divalent metal ions,such as Co^2+,Ni^2+,Cu^2+.The primary results indicate this ionophore material is a potential material for developing efficient fluorescent Zn^2+ chemosensors.
基金National Key Technologies Research & Development Program of China(No.2006BAK03A09)National Basic Research Program of China(No.2007CB714503)Science and Technology Development Program of Jilin Province, China (No.20060706)
文摘A novel immunosensor based on surface plasmon resonance(SPR) has been developed for the recognition of antigen. The sensor was designed on the basis of the fixed angle of incidence and measuring the reflected intensities in a wavelength range of 430--750 nm in real-time. An ultra-bright white light-emitting diode(LED) was used as the light source. Molecular self-assembling in solution was used to form the sensing membrane on gold substrate. It has been seen that the sensitivity of the SPR sensor with 3-mercaptopropionic acid(MPA)/protein A(SPA) sensing membrane is considerably higher than that with MPA or SPA modified sensing membrane. The kinetic processes on the sensing membrane were studied. The human B factor(Bf), an activator of complement 3(C3), was recognized among the other antigens. This sensor can also be used for other antigen/antibody or adaptor/receptor recognition. Under optimized experimental conditions, the sensor has good selectivity, repeatability, and reversibility.
基金supported by the National Natural Science Foundation of China(Nos.22271164,U20A20259)the Fundamental Research Funds for the Central Universitiesthe NCC Fund(No.NCC2020FH04).
文摘Molecular recognition in water,the biological solvent,always receives significant research focus in supramolecular chemistry.The mechanisms of molecular recognition in water is key to comprehending biological processes at the molecular level.Over the past five decades,supramolecular chemists have developed a vast array of synthetic receptors with highly diverse structures and recognition properties.Among them,cyclophanes represent an important family of macrocyclic receptors that have been extensively explored.The aromatic moieties in cyclophanes not only facilitate chemical modifications to impart water solubility but also enable forming hydrophobic cavities for guest inclusion in aqueous environments.Pioneered by Koga et al.,who reported the first inclusion complex of cyclophanes in water and solid state,numerous water-soluble cyclophanes,including derivatives of blue box,calixarenes,resorcinarenes,pillararenes,octopusarenes,biphenarenes,coronarenes,and naphthotubes,etc.,have been synthesized and subjected to investigation of the recognition capabilities in aqueous solutions.This review provides an overview of cyclophane receptors designed to bind organic guests in water.We categorize them into two classes based on the modifications made to their hydrophobic cavities:those with“exo-functionalized hydrophobic cavities”and those with“endo-functionalized hydrophobic cavities”.We introduce their distinctive features and discuss strategies to enhance recognition affinity and selectivity.This review aims to inspire the development of novel synthetic receptors with intriguing properties and foster practical applications of cyclophanes.