Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(a...Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(acetymethylamino)-1-(3-pyridyl)-butanol, 4- (methylamino)-1-(3-pyridyl)-1-butanol, and 1-(3-pyridyl)-1,4,-butanediol. The molecular recognition characteristics of the produced polymers were evaluated by X-ray photoelec- tron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Interactions between NNAL and methacrylic acid should be cooperative hydrogen bonds while the ni- trogen atom of the pyridine ring and the oxygen atom of the nitroso group in NNAL are two of the hydrogen-bond acceptors. It was further demonstrated that DMIP synthesized by 4-(acetymethylamino)-1-(3-pyridyl)-butanol had the best binding performance by XPS and FT-IR. Then dummy molecularly imprinted solid phase extraction (DMISPE) was developed for the determination of the analyte using the hit polymer as the sorbing material. Under optimal conditions, the recovery of NNAL dissolved in standard solution reached 93%. And the investigated polymer exhibited much higher binding of NNAL when nicotine was acted as the competitive molecule. Also the proposed method was applied to the measurement of NNAL spiked in blank urine samples with recoveries ranging from 87.2% to 101.2%.展开更多
Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological...Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological characteristics of the polymers were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), elemental analysis and nitrogen adsorption-desorption test. The obtained results showed that the SMIPs displayed great adsorption capacity (13.5 lag/mg), high recognition ability (the imprinted factor is 3.2) and good binding kinetics for ampicillin sodium. Finally, as solid phase extraction adsorbents, the SMIPs coupled with HPLC method were validated and applied for the enrichment, purification and determination of anapicillin sodium in real milk and blood samples. The averages of spiked accuracy ranged from 92.1% to 107.6%. The relative standard deviations of intra- and inter-day precisions were less than 4.6%. This study provides a new and promising method for enriching, extracting and determining ampicillin sodium in complex biological samples.展开更多
Urinary 8-hydroxy-2 -deoxyguanosine(8-OHdG) is an excellent marker of oxidative DNA damage.In this study,employing guanosine as dummy template a novel molecularly imprinted(MIP) monolithic capillary column had been sy...Urinary 8-hydroxy-2 -deoxyguanosine(8-OHdG) is an excellent marker of oxidative DNA damage.In this study,employing guanosine as dummy template a novel molecularly imprinted(MIP) monolithic capillary column had been synthesized,and that was used as medium of in-tube solid phase microextraction(SPME).Coupled with capillary electrophoresis-electrochemical detection(CE-ECD),the system of extraction and detection of 8-OHdG in urinary sample had been developed.Because of its greater phase ratio combined with conv...展开更多
[ Objective] The research aimed to develop a new molecular imprinting solid-phase extraction column for the separation and enrichment of melamine in feed. [ Method] The molecular imprinting polymer of melamine was pre...[ Objective] The research aimed to develop a new molecular imprinting solid-phase extraction column for the separation and enrichment of melamine in feed. [ Method] The molecular imprinting polymer of melamine was prepared by mass polymerization method. This polymer was used as filler to prepare molecular imprinting polymer solid-phase extraction(MIP-SPE) column of melamine. The solid-phase extraction conditions were optimized and melamine content in concentrated solution was determined by using HPLC. [ Result] Melamine eould be separated selectively from feed and enriehed by self-made MIP-SPE column. It could wipe off complex matrix from feed and the addition recovery rate was 95%. The contrast experiment between MIP-SPE column and NMIP-SPE ( non-imprinted polymer- solid phase extraction) column showed that the extraction efficiency of the former was obviously higher than the latter. [ Conclusion] The home-made MIP- SPE column could be used to separate and enrich melamine in feed efficiently, with a broad application prospect.展开更多
A molecularly imprinted polymer (MIP), prepared around a cotinine template, has been synthesized. The feasibility of using the polymer for solid-phase extraction (SPE) of cotinine from biological samples has been ...A molecularly imprinted polymer (MIP), prepared around a cotinine template, has been synthesized. The feasibility of using the polymer for solid-phase extraction (SPE) of cotinine from biological samples has been investigated. The results show that cotinine can be quantitatively retained and eluted from the polymer. Experiments with human urine samples indicate that clean target analyte is obtained for HPLC with UV detection using the protocol.展开更多
2,4,6-trichlorophenol molecularly imprinted suspension polymer has been prepared and applied to the molecularly imprinted micro-solid-phase extraction procedure for selective preconcentration of phenolic compounds fro...2,4,6-trichlorophenol molecularly imprinted suspension polymer has been prepared and applied to the molecularly imprinted micro-solid-phase extraction procedure for selective preconcentration of phenolic compounds from environmental water samples. The influence of functional monomer, cross-linker, polymerization condition, porogen, and the ratio of template molecule and functional monomer to cross-linker on the size of the obtained particles were investigated. It was found that methyacrylic acid as functional monomer, divinylbenzene as cross-linker, the molar ratio of template molecule and functional monomer to cross-linker was 1:4:20, the amount of AIBN was 100 mg, ultraviolet radiation at 365 nm were the optimal conditions, and at these conditions, the polymers had the best adsorption efficiency and had the monodispersity of 2 - 3 μm microsphere particles. The characteristics of the MIMSPE method were valid by high performance liquid chromatography. This MIMSPE-HPLC method has been successfully applied to the direct preconcentration and determination of phenolic compounds (phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol) in environmental water samples.展开更多
A molecular imprinting polymer technique was successfully applied to precipitation polymerization by using styrene as a functional monomer, curcuminoids as templates, acetonitrile as a porogenic solvent,benzoyl peroxi...A molecular imprinting polymer technique was successfully applied to precipitation polymerization by using styrene as a functional monomer, curcuminoids as templates, acetonitrile as a porogenic solvent,benzoyl peroxide as the initiator, and ethylene glycol dimethacrylate as the crosslinker. The effects of interaction on the adsorption capacity of the molecularly imprinted polymer(MIP) and non-imprinted polymer(NIP) were investigated. A comparison of the adsorption capacity for MIP and NIP indicated that the NIP had the lowest adsorption capacity. The curcuminoid-imprinted polymer(Cur-MIP) was synthesized from 0.0237 mmol of styrene, 47.0 g of acetonitrile, 1.0238 mmol of ethylene glycol dimethacrylate, 0.0325 mmol of curcuminoids, and 0.2480 mmol of benzoyl peroxide. A high-performance liquid chromatography method with fluorescence detection was developed and validated for various chromatographic conditions for the determination of the curcuminoids in turmeric samples. The sample solution was separated using the Cur-MIP via solid-phase extraction and analyzed on a Brownlee analytical C_(18) column(150 mm ×6 mm, 5 mm) using an isocratic elution consisting of acetonitrile and 0.1%trichloroacetic acid(40:60, v/v). The flow rate was maintained at 1.5 m L/min. The fluorescence detector was set to monitor at λex? 426 nm and λem? 539 nm. The quantification limit values were found to be16.66, 66.66, and 33.33 mg/L for curcumin, demethoxycurcumin, and bisdemethoxycurcumin, respectively. Thus, we concluded that the Cur-MIP and high-performance liquid chromatographic-fluorescence method could be applied to selective extraction and could be used as a rapid tool for the determination of curcuminoids in medicinal herbal extracts.展开更多
Novel uniform-sized magnetic molecularly imprinted polymers (MMIPs) were synthe- sized for selective recognition of active antitumor ingredients of kaempferol (KMF) and protoapi- genone (PA) in Macrothelypteris ...Novel uniform-sized magnetic molecularly imprinted polymers (MMIPs) were synthe- sized for selective recognition of active antitumor ingredients of kaempferol (KMF) and protoapi- genone (PA) in Macrothelypteris torresiana (M. torresiana) by surface molecular imprinting tech- nique in this study. Super paramagnetic core-sheU nanoparticles (γ-MPS-SiO2@Fe3O4) were used as seeds, KMF as template molecule, acrylamide (AM) as functional monomer, and N, N'-methylene bisacrylamide (BisAM) as cross-linker. The prepared MMIPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum fiT/R), transmission electron microscopy (TEM) and thermo-gravimetric analysis (TGA), respectively. The recognition capacity of MMIPs was 2.436 times of non-imprinted polymers. The adsorption results based on kinetics and isotherm analysis were in accordance with the pseudo-second-order model (R2=0.9980) and the Langmuir adsorption model (R2=0.9944). The value of E (6.742 kJ/mol) calculated from the Dubinin-Radushkevich isotherm model suggested that the physical adsorption via hydrogen-bonding might be predominant. The Scatchard plot showed a single line (R2=0.9172) and demonstrated the homogeneous recognition sites on MMIPs for KMF. The magnetic solid phase extraction (MSPE) based on MMIPs as sorbent was established for fast and selective enrichment of KMF and its structural analogue PA from the crude extract of M. torresiana and then KMF and PA were detected by HPLC-UV. The established method showed good performance and satisfactory results for real sample analysis. It also showed the feasi- bility of MMIPs for selective recognition of active structural analogues from complex herbal extracts.展开更多
Molecularly imprinted technology (MIT) has the characteristics of specificity and high selectivity, which is one of the most promising methodologies. Besides, the polymers are made using MIT as the functional material...Molecularly imprinted technology (MIT) has the characteristics of specificity and high selectivity, which is one of the most promising methodologies. Besides, the polymers are made using MIT as the functional material of solid-phase extraction and chromatographic fractionating and sensor, because of the characteristics of the high selectivity, the better stability and easy preparation. This review introduces the progress in the application of MIT and summarizes its application in the chemistry.展开更多
A solid phase extraction procedure(SPE)is described for the quantitative analysis of polycyclic aromatic hydrocarbons(PAHs)in atmospheric particulate matter(PM),as ubiquitous environmental pollutants routinely measure...A solid phase extraction procedure(SPE)is described for the quantitative analysis of polycyclic aromatic hydrocarbons(PAHs)in atmospheric particulate matter(PM),as ubiquitous environmental pollutants routinely measured in air qualitymonitoring.A SPE cartridge was used based on a molecular imprinted polymer(MIP-SPE)properly tailored for selective retention of PAHs with 4 and more benzene fused rings.The performance of the clean-up procedure was evaluated with the specific concern of selective purification towards saturated hydrocarbons,which are the PM components mostly interfering GC analysis of target PAHs.Under optimized operative conditions,the MIP-SPE provided analyte recovery close to 95%for heavier PAHs,from benzo(α)pyrene to benzo(ghi)perylene,and close to 90%for four benzene rings PAHs,with good reproducibility(RSDs:2.5%-5.9%).Otherwise,C_(17)-C_(32) n-alkanes were nearly completely removed.The proposed method was critically compared with Solid Phase Micro Extraction(SPME)using a polyacrylate fiber.Both methods were successfully applied to the analysis of ambient PM2.5 samples collected at an urban polluted site.Between the two procedures,the MIP-SPE provided the highest recovery(R%≥93%)for PAHs with 5 and more benzene rings,but lower for lighter PAHs.In contrast,SPME showed a mean acceptable R%value(∼80%)for all the investigated PAHs,except for the heaviest PAHs in the most polluted samples(R%:110%-138%),suggesting an incomplete purification from the interfering n-hydrocarbons.展开更多
The extraction and separation of aloe emodin were optimized via selective molecularly imprinted solid-phase extraction. Molecularly imprinted polymer was prepared from the functional monomer, methacrylic acid and a mi...The extraction and separation of aloe emodin were optimized via selective molecularly imprinted solid-phase extraction. Molecularly imprinted polymer was prepared from the functional monomer, methacrylic acid and a mixture of ethanol/dodecanol(90/10, volume ratio) as porogen. It overcomes the common problems of imprin- ting biological polar compounds and shows high selectivity compared favorably with those of non-imprinted polymer and commercially available C18 and silica cartridges in similar aloe emodin tests. Good linearity was obtained be- tween 0.002 and 2.5 mg/mL(r2=0.998) with relative standard deviations below 3.3%.展开更多
Ecteinascidin 743 from sea squirt is one of the most original anti-tumoral activity compounds, as proven by the Natural Cancer Institute. Ecteinascidin 743 could be obtained with traditional liquid extraction, but it ...Ecteinascidin 743 from sea squirt is one of the most original anti-tumoral activity compounds, as proven by the Natural Cancer Institute. Ecteinascidin 743 could be obtained with traditional liquid extraction, but it should be purified and separated from the extract. A molecularly imprinted solid-phase extraction procedure was developed for the selective separation. Ecteinascidin 743 was used as the template and the polymer was synthesized in a methanol environment. Water and n-hexane as the washing solvents can eliminate most of the interference. Good linearity and low relative standard deviations (less than 4.39%)justify its continuing development.展开更多
Surface molecularly imprinted polymers (SMIPs) have been synthesized to selectively determine (-)-epigallocatechin gallate in aqueous media. SMIPs were prepared using a surface grafting copolymerization method on ...Surface molecularly imprinted polymers (SMIPs) have been synthesized to selectively determine (-)-epigallocatechin gallate in aqueous media. SMIPs were prepared using a surface grafting copolymerization method on a functionalized silica gel modified with β-cyclodextrin and vinyl groups. The morphology and composition of the SMIPs were investigated by scanning electron microscopy, Fourier transform-infrared spectroscopy and thermogravimetric analysis. In addition, the molecular binding capacity, recognition properties and selectivity of the SMIPs were evaluated. The imprinted polymers were found to have a highly specific recognition and binding capacity for aqueous media which is (-)-epigallocatechin gallate in the result of the hydrophobic properties of the β-cyclodextrin and the hydrogen-bonding interactions of methacrylic acid. The SMIPs were successfully employed as solid-phase extraction adsor- bents prior to the HPLC determination of (-)-epigallocatechin gallate in toothpaste. The HPLC analysis had a linear dynamic range of 0.5-50.0 μg·mL^-1 with a correlation coefficient of 0.9998 and the recoveries ranged from 89.4% to 97.0% with relative standard deviations less than 4.8%. The limit of detection and limit of quantification were 0.17 and 0.33 μg·mL^-1, respectively. The method provides a promising approach for the preparation of selective materials for the purification and determination of complex samples.展开更多
Imprinted polymers were prepared for selective removal of Cu(Ⅱ) ions from metal solutions. Three ion-imprinted polymers were synthesized with methacrylic acid (MAA), acrylamide (AA) and N,N'-methylenebisacryla...Imprinted polymers were prepared for selective removal of Cu(Ⅱ) ions from metal solutions. Three ion-imprinted polymers were synthesized with methacrylic acid (MAA), acrylamide (AA) and N,N'-methylenebisacrylamide (MBAA) respectively as the functional monomers, ethleneglycoldimethacrylate (EGDMA) as the cross-linking agent, 2,2'- azobisisobutyronitrile (AIBN) as the initiator and Cu (Ⅱ) ion as the imprint ion. The template Cu (Ⅱ) ion was removed from the polymer by leaching with a liquid of a 1:1 volumetric ratio of HCl to ethylenediaminetetraacetic acid (EDTA). The capacity and selectivity of Cu(Ⅱ) ion adsorption were investigated with the three imprinted polymers and their non-imprinted counterparts. The polymers have a maximum adsorption capacity at pH 7.0. The isotherm of their batch adsorption of Cu(Ⅱ) ions shows a Langmuir adsorption pattern. Imprinted polymers all have a much higher capacity and higher selectivity of Cu(Ⅱ) adsorption than nonimprinted ones. MAA polymer benefits the most from imprinting. Imprinted MAA polymer has the highest selectivity when used to rebind Cu (Ⅱ) ion from an aqueous solution in the presence of other metal ions. Ion imprinting can be a promising technique of preparing selective adsorbents to separate and preconcentrate metal in a medium of multiple competitive metal ions through solid phase extraction (SPE).展开更多
A rapid, simple and selective method based on molecularly imprinted, spin column extraction coupled with fluorescence detection was successfully established for the determination of 2,4-dinitrophenol in serum samples....A rapid, simple and selective method based on molecularly imprinted, spin column extraction coupled with fluorescence detection was successfully established for the determination of 2,4-dinitrophenol in serum samples. The 2,4-dinitrophenol imprinted polymers exhibited highly selective recognition for the template molecule and the maximum adsorption capacity was 138.9 mg/g. The results indicated that when water is used as the loading solution, only 2,4-dinitrophenol could be adsorbed on the spin column without the remaining structural analogs(2-nitrophenol, 4-nitrophenol and phenol). After eluting with acetonitrile/acetic acid(9/1, v/v), 2,4-dinitrophenol in serum samples could be determined by using the fluorescence spectrometer, based on the fluorescence enhancement of fluorescein by the template molecule. Under the optimal conditions, the spiked recovery ranged from 95.8% to 103.4% and the detection limit was 1 nmol/L. The results confirmed the reliability and practicality of the protocol and revealed a good perspective of this method for biological sample analysis.展开更多
文摘Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(acetymethylamino)-1-(3-pyridyl)-butanol, 4- (methylamino)-1-(3-pyridyl)-1-butanol, and 1-(3-pyridyl)-1,4,-butanediol. The molecular recognition characteristics of the produced polymers were evaluated by X-ray photoelec- tron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Interactions between NNAL and methacrylic acid should be cooperative hydrogen bonds while the ni- trogen atom of the pyridine ring and the oxygen atom of the nitroso group in NNAL are two of the hydrogen-bond acceptors. It was further demonstrated that DMIP synthesized by 4-(acetymethylamino)-1-(3-pyridyl)-butanol had the best binding performance by XPS and FT-IR. Then dummy molecularly imprinted solid phase extraction (DMISPE) was developed for the determination of the analyte using the hit polymer as the sorbing material. Under optimal conditions, the recovery of NNAL dissolved in standard solution reached 93%. And the investigated polymer exhibited much higher binding of NNAL when nicotine was acted as the competitive molecule. Also the proposed method was applied to the measurement of NNAL spiked in blank urine samples with recoveries ranging from 87.2% to 101.2%.
基金financially supported by the National Natural Science Foundation of China (Nos. 81573391 and 81173024)the National Key Projects of China (No. 812277802)
文摘Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological characteristics of the polymers were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), elemental analysis and nitrogen adsorption-desorption test. The obtained results showed that the SMIPs displayed great adsorption capacity (13.5 lag/mg), high recognition ability (the imprinted factor is 3.2) and good binding kinetics for ampicillin sodium. Finally, as solid phase extraction adsorbents, the SMIPs coupled with HPLC method were validated and applied for the enrichment, purification and determination of anapicillin sodium in real milk and blood samples. The averages of spiked accuracy ranged from 92.1% to 107.6%. The relative standard deviations of intra- and inter-day precisions were less than 4.6%. This study provides a new and promising method for enriching, extracting and determining ampicillin sodium in complex biological samples.
基金the support of the National Natural Science Foundation of China(No.20575051).
文摘Urinary 8-hydroxy-2 -deoxyguanosine(8-OHdG) is an excellent marker of oxidative DNA damage.In this study,employing guanosine as dummy template a novel molecularly imprinted(MIP) monolithic capillary column had been synthesized,and that was used as medium of in-tube solid phase microextraction(SPME).Coupled with capillary electrophoresis-electrochemical detection(CE-ECD),the system of extraction and detection of 8-OHdG in urinary sample had been developed.Because of its greater phase ratio combined with conv...
基金Supported by Xiamen Science and Technology Plan Project(3502Z20123046)A-class Plan Project of Education Department of Fujian Province(JA12465)
文摘[ Objective] The research aimed to develop a new molecular imprinting solid-phase extraction column for the separation and enrichment of melamine in feed. [ Method] The molecular imprinting polymer of melamine was prepared by mass polymerization method. This polymer was used as filler to prepare molecular imprinting polymer solid-phase extraction(MIP-SPE) column of melamine. The solid-phase extraction conditions were optimized and melamine content in concentrated solution was determined by using HPLC. [ Result] Melamine eould be separated selectively from feed and enriehed by self-made MIP-SPE column. It could wipe off complex matrix from feed and the addition recovery rate was 95%. The contrast experiment between MIP-SPE column and NMIP-SPE ( non-imprinted polymer- solid phase extraction) column showed that the extraction efficiency of the former was obviously higher than the latter. [ Conclusion] The home-made MIP- SPE column could be used to separate and enrich melamine in feed efficiently, with a broad application prospect.
基金supported by the National Natural Science Foundation of China(No.20405013)the Scientific Foundation of State Tobacco Monopoly Administration of China(No.110200201017).
文摘A molecularly imprinted polymer (MIP), prepared around a cotinine template, has been synthesized. The feasibility of using the polymer for solid-phase extraction (SPE) of cotinine from biological samples has been investigated. The results show that cotinine can be quantitatively retained and eluted from the polymer. Experiments with human urine samples indicate that clean target analyte is obtained for HPLC with UV detection using the protocol.
文摘2,4,6-trichlorophenol molecularly imprinted suspension polymer has been prepared and applied to the molecularly imprinted micro-solid-phase extraction procedure for selective preconcentration of phenolic compounds from environmental water samples. The influence of functional monomer, cross-linker, polymerization condition, porogen, and the ratio of template molecule and functional monomer to cross-linker on the size of the obtained particles were investigated. It was found that methyacrylic acid as functional monomer, divinylbenzene as cross-linker, the molar ratio of template molecule and functional monomer to cross-linker was 1:4:20, the amount of AIBN was 100 mg, ultraviolet radiation at 365 nm were the optimal conditions, and at these conditions, the polymers had the best adsorption efficiency and had the monodispersity of 2 - 3 μm microsphere particles. The characteristics of the MIMSPE method were valid by high performance liquid chromatography. This MIMSPE-HPLC method has been successfully applied to the direct preconcentration and determination of phenolic compounds (phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol) in environmental water samples.
文摘A molecular imprinting polymer technique was successfully applied to precipitation polymerization by using styrene as a functional monomer, curcuminoids as templates, acetonitrile as a porogenic solvent,benzoyl peroxide as the initiator, and ethylene glycol dimethacrylate as the crosslinker. The effects of interaction on the adsorption capacity of the molecularly imprinted polymer(MIP) and non-imprinted polymer(NIP) were investigated. A comparison of the adsorption capacity for MIP and NIP indicated that the NIP had the lowest adsorption capacity. The curcuminoid-imprinted polymer(Cur-MIP) was synthesized from 0.0237 mmol of styrene, 47.0 g of acetonitrile, 1.0238 mmol of ethylene glycol dimethacrylate, 0.0325 mmol of curcuminoids, and 0.2480 mmol of benzoyl peroxide. A high-performance liquid chromatography method with fluorescence detection was developed and validated for various chromatographic conditions for the determination of the curcuminoids in turmeric samples. The sample solution was separated using the Cur-MIP via solid-phase extraction and analyzed on a Brownlee analytical C_(18) column(150 mm ×6 mm, 5 mm) using an isocratic elution consisting of acetonitrile and 0.1%trichloroacetic acid(40:60, v/v). The flow rate was maintained at 1.5 m L/min. The fluorescence detector was set to monitor at λex? 426 nm and λem? 539 nm. The quantification limit values were found to be16.66, 66.66, and 33.33 mg/L for curcumin, demethoxycurcumin, and bisdemethoxycurcumin, respectively. Thus, we concluded that the Cur-MIP and high-performance liquid chromatographic-fluorescence method could be applied to selective extraction and could be used as a rapid tool for the determination of curcuminoids in medicinal herbal extracts.
基金supported by grants from the National Natural Science Foundation of China(No.21105032)Doctoral Program Fund of Ministry of Education of China(No.20110142120031)
文摘Novel uniform-sized magnetic molecularly imprinted polymers (MMIPs) were synthe- sized for selective recognition of active antitumor ingredients of kaempferol (KMF) and protoapi- genone (PA) in Macrothelypteris torresiana (M. torresiana) by surface molecular imprinting tech- nique in this study. Super paramagnetic core-sheU nanoparticles (γ-MPS-SiO2@Fe3O4) were used as seeds, KMF as template molecule, acrylamide (AM) as functional monomer, and N, N'-methylene bisacrylamide (BisAM) as cross-linker. The prepared MMIPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum fiT/R), transmission electron microscopy (TEM) and thermo-gravimetric analysis (TGA), respectively. The recognition capacity of MMIPs was 2.436 times of non-imprinted polymers. The adsorption results based on kinetics and isotherm analysis were in accordance with the pseudo-second-order model (R2=0.9980) and the Langmuir adsorption model (R2=0.9944). The value of E (6.742 kJ/mol) calculated from the Dubinin-Radushkevich isotherm model suggested that the physical adsorption via hydrogen-bonding might be predominant. The Scatchard plot showed a single line (R2=0.9172) and demonstrated the homogeneous recognition sites on MMIPs for KMF. The magnetic solid phase extraction (MSPE) based on MMIPs as sorbent was established for fast and selective enrichment of KMF and its structural analogue PA from the crude extract of M. torresiana and then KMF and PA were detected by HPLC-UV. The established method showed good performance and satisfactory results for real sample analysis. It also showed the feasi- bility of MMIPs for selective recognition of active structural analogues from complex herbal extracts.
文摘Molecularly imprinted technology (MIT) has the characteristics of specificity and high selectivity, which is one of the most promising methodologies. Besides, the polymers are made using MIT as the functional material of solid-phase extraction and chromatographic fractionating and sensor, because of the characteristics of the high selectivity, the better stability and easy preparation. This review introduces the progress in the application of MIT and summarizes its application in the chemistry.
基金supported by the Emilia Romagna Region (POR FESR 2014-2020),project IPA/BC-MONITOR (No. E32I16000030007 2016)
文摘A solid phase extraction procedure(SPE)is described for the quantitative analysis of polycyclic aromatic hydrocarbons(PAHs)in atmospheric particulate matter(PM),as ubiquitous environmental pollutants routinely measured in air qualitymonitoring.A SPE cartridge was used based on a molecular imprinted polymer(MIP-SPE)properly tailored for selective retention of PAHs with 4 and more benzene fused rings.The performance of the clean-up procedure was evaluated with the specific concern of selective purification towards saturated hydrocarbons,which are the PM components mostly interfering GC analysis of target PAHs.Under optimized operative conditions,the MIP-SPE provided analyte recovery close to 95%for heavier PAHs,from benzo(α)pyrene to benzo(ghi)perylene,and close to 90%for four benzene rings PAHs,with good reproducibility(RSDs:2.5%-5.9%).Otherwise,C_(17)-C_(32) n-alkanes were nearly completely removed.The proposed method was critically compared with Solid Phase Micro Extraction(SPME)using a polyacrylate fiber.Both methods were successfully applied to the analysis of ambient PM2.5 samples collected at an urban polluted site.Between the two procedures,the MIP-SPE provided the highest recovery(R%≥93%)for PAHs with 5 and more benzene rings,but lower for lighter PAHs.In contrast,SPME showed a mean acceptable R%value(∼80%)for all the investigated PAHs,except for the heaviest PAHs in the most polluted samples(R%:110%-138%),suggesting an incomplete purification from the interfering n-hydrocarbons.
文摘The extraction and separation of aloe emodin were optimized via selective molecularly imprinted solid-phase extraction. Molecularly imprinted polymer was prepared from the functional monomer, methacrylic acid and a mixture of ethanol/dodecanol(90/10, volume ratio) as porogen. It overcomes the common problems of imprin- ting biological polar compounds and shows high selectivity compared favorably with those of non-imprinted polymer and commercially available C18 and silica cartridges in similar aloe emodin tests. Good linearity was obtained be- tween 0.002 and 2.5 mg/mL(r2=0.998) with relative standard deviations below 3.3%.
文摘Ecteinascidin 743 from sea squirt is one of the most original anti-tumoral activity compounds, as proven by the Natural Cancer Institute. Ecteinascidin 743 could be obtained with traditional liquid extraction, but it should be purified and separated from the extract. A molecularly imprinted solid-phase extraction procedure was developed for the selective separation. Ecteinascidin 743 was used as the template and the polymer was synthesized in a methanol environment. Water and n-hexane as the washing solvents can eliminate most of the interference. Good linearity and low relative standard deviations (less than 4.39%)justify its continuing development.
基金Acknowledgements This work was supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LY 12B07010) and National Natural Science Foundation of China (Grant No.20807037).
文摘Surface molecularly imprinted polymers (SMIPs) have been synthesized to selectively determine (-)-epigallocatechin gallate in aqueous media. SMIPs were prepared using a surface grafting copolymerization method on a functionalized silica gel modified with β-cyclodextrin and vinyl groups. The morphology and composition of the SMIPs were investigated by scanning electron microscopy, Fourier transform-infrared spectroscopy and thermogravimetric analysis. In addition, the molecular binding capacity, recognition properties and selectivity of the SMIPs were evaluated. The imprinted polymers were found to have a highly specific recognition and binding capacity for aqueous media which is (-)-epigallocatechin gallate in the result of the hydrophobic properties of the β-cyclodextrin and the hydrogen-bonding interactions of methacrylic acid. The SMIPs were successfully employed as solid-phase extraction adsor- bents prior to the HPLC determination of (-)-epigallocatechin gallate in toothpaste. The HPLC analysis had a linear dynamic range of 0.5-50.0 μg·mL^-1 with a correlation coefficient of 0.9998 and the recoveries ranged from 89.4% to 97.0% with relative standard deviations less than 4.8%. The limit of detection and limit of quantification were 0.17 and 0.33 μg·mL^-1, respectively. The method provides a promising approach for the preparation of selective materials for the purification and determination of complex samples.
基金the Natural Science Foundation of Hunan Province (No. 06JJ4117).
文摘Imprinted polymers were prepared for selective removal of Cu(Ⅱ) ions from metal solutions. Three ion-imprinted polymers were synthesized with methacrylic acid (MAA), acrylamide (AA) and N,N'-methylenebisacrylamide (MBAA) respectively as the functional monomers, ethleneglycoldimethacrylate (EGDMA) as the cross-linking agent, 2,2'- azobisisobutyronitrile (AIBN) as the initiator and Cu (Ⅱ) ion as the imprint ion. The template Cu (Ⅱ) ion was removed from the polymer by leaching with a liquid of a 1:1 volumetric ratio of HCl to ethylenediaminetetraacetic acid (EDTA). The capacity and selectivity of Cu(Ⅱ) ion adsorption were investigated with the three imprinted polymers and their non-imprinted counterparts. The polymers have a maximum adsorption capacity at pH 7.0. The isotherm of their batch adsorption of Cu(Ⅱ) ions shows a Langmuir adsorption pattern. Imprinted polymers all have a much higher capacity and higher selectivity of Cu(Ⅱ) adsorption than nonimprinted ones. MAA polymer benefits the most from imprinting. Imprinted MAA polymer has the highest selectivity when used to rebind Cu (Ⅱ) ion from an aqueous solution in the presence of other metal ions. Ion imprinting can be a promising technique of preparing selective adsorbents to separate and preconcentrate metal in a medium of multiple competitive metal ions through solid phase extraction (SPE).
基金supported by National Key Technology R&D Program in the 11th Five-Year Plan of China(No.2009BADB9B02)
文摘A rapid, simple and selective method based on molecularly imprinted, spin column extraction coupled with fluorescence detection was successfully established for the determination of 2,4-dinitrophenol in serum samples. The 2,4-dinitrophenol imprinted polymers exhibited highly selective recognition for the template molecule and the maximum adsorption capacity was 138.9 mg/g. The results indicated that when water is used as the loading solution, only 2,4-dinitrophenol could be adsorbed on the spin column without the remaining structural analogs(2-nitrophenol, 4-nitrophenol and phenol). After eluting with acetonitrile/acetic acid(9/1, v/v), 2,4-dinitrophenol in serum samples could be determined by using the fluorescence spectrometer, based on the fluorescence enhancement of fluorescein by the template molecule. Under the optimal conditions, the spiked recovery ranged from 95.8% to 103.4% and the detection limit was 1 nmol/L. The results confirmed the reliability and practicality of the protocol and revealed a good perspective of this method for biological sample analysis.